

Advanced Information and Knowledge Processing

Series Editors

Professor Lakhmi Jain
Lakhmi.jain@unisa.edu.au

Professor Xindong Wu
xwu@cs.uvm.edu

Also in this series

Gregoris Mentzas, Dimitris Apostolou, Andreas Abecker and Ron Young
Knowledge Asset Management
1-85233-583-1

Michalis Vazirgiannis, Maria Halkidi and Dimitrios Gunopulos
Uncertainty Handling and Quality Assessment in Data Mining
1-85233-655-2

Asunción Gómez-Pérez, Mariano Fernández-López and Oscar Corcho
Ontological Engineering
1-85233-551-3

Arno Scharl (Ed.)
Environmental Online Communication
1-85233-783-4

Shichao Zhang, Chengqi Zhang and Xindong Wu
Knowledge Discovery in Multiple Databases
1-85233-703-6

Jason T.L. Wang, Mohammed J. Zaki, Hannu T.T. Toivonen and Dennis Shasha (Eds)
Data Mining in Bioinformatics
1-85233-671-4

C.C. Ko, Ben M. Chen and Jianping Chen
Creating Web-based Laboratories
1-85233-837-7

Manuel Graña, Richard Duro, Alicia d’Anjou and Paul P. Wang (Eds)
Information Processing with Evolutionary Algorithms
1-85233-886-0

Colin Fyfe
Hebbian Learning and Negative Feedback Networks
1-85233-883-0

Yun-Heh Chen-Burger and Dave Robertson
Automating Business Modelling
1-85233-835-0

Dirk Husmeier, Richard Dybowski and Stephen Roberts (Eds)
Probabilistic Modeling in Bioinformatics and Medical Informatics
1-85233-778-8

Ajith Abraham, Lakhmi Jain and Robert Goldberg (Eds)
Evolutionary Multiobjective Optimization
1-85233-787-7

K.C. Tan, E.F.Khor and T.H. Lee
Multiobjective Evolutionary Algorithms and Applications
1-85233-836-9

Nikhil R. Pal and Lakhmi Jain (Eds)
Advanced Techniques in Knowledge Discovery and Data Mining
1-85233-867-9

Amit Konar and Lakhmi Jain
Cognitive Engineering
1-85233-975-6

Miroslav Kárný (Ed.)
Optimized Bayesian Dynamic Advising
1-85233-928-4

Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos and
Yannis Theodoridis
R-trees: Theory and Applications
1-85233-977-2

Sanghamitra Bandyopadhyay, Ujjwal Maulik, Lawrence B. Holder and Diane J. Cook (Eds)
Advanced Methods for Knowledge Discovery from Complex Data
1-85233-989-6

Marcus A. Maloof (Ed.)
Machine Learning and Data Mining for Computer Security
1-84628-029-X

Sifeng Liu and Yi Lin
Grey Information
1-85233-995-0

Vasile Palade, Cosmin Danut Bocaniala and Lakhmi Jain (Eds)
Computational Intelligence in Fault Diagnosis
1-84628-343-4

Mitra Basu and Tin Kam Ho (Eds)
Data Complexity in Pattern Recognition
1-84628-171-7

Samuel Pierre (Ed.)
E-learning Networked Environments and Architectures
1-84628-351-5

Arno Scharl and Klaus Tochtermann (Eds)
The Geospatial Web
1-84628-826-5

Ngoc Thanh Nguyen
Advanced Methods for Inconsistent Knowledge Management
1-84628-888-3

Amnon Meisels

Distributed Search
by Constrained Agents

Algorithms, Performance,
Communication

Amnon Meisels
Department of Computer Science
Ben-Gurion University, Beer-Sheva, Israel

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007940843

AI&KP ISSN 1610-3947
ISBN: 978-1-84800-039-1 e-ISBN: 978-1-84800-040-7

c© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

To Sari with love
My wife and best friend

Preface

Distributed search by agents is an important topic of distributed AI and has
not been treated thoroughly as such. While the scope of work on multi-agent
systems has grown steadily over the last decade, very little of it has spilled
into distributed search. In conrast, the constraints processing community has
produced a sizable body of work on distributed constrained search. Paradoxi-
cally, a community that concentrates on search algorithms and heuristics has
created a distributed model for agents that cooperate on solving hard search
problems. Traditionally, this field has been named Ditributed Constraints Sat-
isfaction and lately also distributed constraints optimization. The present book
attempts to prompt deeper response from the MAS community and hopefully
to give rise to cooperative work on distributed search by agents. In order to
achieve this high goal, the book presents the large body of work on distributed
search by constrained agents. The presentation emphasizes many aspects of
distributed computation that connect naturally to multi-agent systems, es-
pecially measures of performance for distributed search algorithms and the
impact of delays in communication.

Distributed Constraints Satisfaction Problems (DisCSPs) have been stud-
ied over the last decade, starting with the pioneering proposal by Makoto
Yokoo [18]. The first distributed search algorithm for DisCSPs - Asyn-
chronous Backtracking (ABT) - was first published in complete format in
1998 [64]. The first book on Distributed Constraints Satisfaction Problems
has appeared as early as 2000 [61]. The book includes most of Yokoo’s early
work - distributed search algorithms, both complete and stochastic, and some
experimental evaluation of the algorithms. It took five more years for the ex-
tensive form of ABT, including three well-defined versions and a correctness
proof, to be published. In total, 10 years elapsed between Yokoo’s original
proposal of Asynchronous Backtracking, to the final extended form in the
AI Journal in 2005 [9]. This gives a clear demonstration of the intricacies of
distributed search algorithms, which form the heart of the field and of the
present book.

VIII Preface

In the last six years, since the year 2000, the community of researchers in
the field have had at least one yearly workshop. These activities have helped
the field mature into one of the recognized disciplines of both Constraints
Processing (CP) and Multi-Agent Systems (MAS). In fact, the yearly work-
shops have been taking place alternately within the CP conferences and the
AAMAS conferences (and the general AI conference, IJCAI). The series of
Distributed Constraints Reasoning (DCR) workshops served as the forum for
a community of more than 50 researchers worldwide and has published more
than 20 papers yearly on DisCSP.

The field of distributed constraints search now includes two main fam-
ilies of problems - Distributed Constraints Satisfaction Problems DisCSPs
and Distributed Constraints Optimization Problems (DisCOP)s. With the
rapid rate of published work on DisCSPs and DisCOPs a book is very much
needed, to present in detail the accumulated body of work of all researchers.
While preparing my tutorial talk for CP-2004 in Toronto, I first noticed that
a short presentation of the field must include three parts. These three parts
form the backbone of this book. The first and most important part introcuces
in great detail search algorithms for DisCSPs and DisCOPs. Quite a number
of search algorithms have been proposed in recent years for both DisCSPs
and DisCOPs and an in-depth exposition of all algorithms is long overdue.
The algorithmic part of the exposition has also grown to include ordering
heuristics. Both asynchronous heuristics and sequential ones have appeared
in the DisCSP literature in the last three years. Asynchronous heuristics are
accompanied by an innovative algorithm that enables ABT to include dynamic
ordering of agents [74].

The second part of the presentation of Distributed Search by Constrained
Agents includes a comprehensive study of distributed performance measures
for all algorithms. Based on the resulting coherent and asynchronous scale of
performance, an extensive experimental evaluation can be constructed. In the
present book this part is in Chapter 10 and Chapter 11.

The third part of our presentation of current research on DisCSPs and
DisCOPs relates to their inherent distributed nature and addresses poten-
tial problems. These can relate to potential delays in communication, or to
a variety of other agent topics, such as privacy of information used during
search. This book addresses communication problems like message delays in
detail in Chapter 12 and measures the impact of delays on the performance
of families of DisCSP search algorithms in Chapter 13. The first few steps
in the direction of privacy preservation have been taken in the last four years,
for example, investigating means of preserving privacy [10, 42]. However, this
topic is left for a later addition when more work will have accumulated.

The book starts by describing the problems and by giving motivation for
their great usefulness in today’s distributed world. In order to solve DisCSPs
one needs distributed search algorithms. The first asynchronous algorithm
in the field was introduced a decade ago by the pioneering work of Makoto
Yokoo [62, 64]. The asynchronous backtracking algorithm (ABT) is presented

Preface IX

in its modern form, as in [9]. ABT continues to be a central DisCSP search
algorithm and will be used in two forms in the book, first, as a reference
for all performance evaluations of other algorithms, second, as a basis for
enhancement, regarding ordering heuristics.

The distributed nature of the search problem that is at the center of this
book makes it a natural selection for a graduate course on this topic. Dis-
tributed search algorithms that are run by all agents and find a global so-
lution can serve as a solid demonstration for distributed AI and multi-agent
systems (MAS). A short introduction on Constraints Satisfaction Problems is
needed, perhaps a bit more extensive than the one given in the first chapter.
Part of the material in this book has been presented by me in the graduate
course on Constraints Processing that I have been giving over the last four
years in both my department at Ben-Gurion University and at the computer
science department of the Open University. Emphasizing the distributed na-
ture of DisCSP algorithms I have routinely focused all final projects of the
students on my course on implementing and investigating distributed search
algorithms.

This book focuses on the main research results in distributed constraints
satisfaction and optimization over the last decade. Thus it can serve as a re-
search asset to researchers and to graduate students that focus on distributed
search by agents and in particular on DisCSPs and DisCOPs. It is my hope
that this complete text can serve as a basis for a course on distributed search
in AI. I believe that the accumulated work on search by constrained agents is
an excellent algorithmic and clearcut example of the cooperation of agents in
search.

The present book is the result of six very intensive years of research with
my wonderful group of graduate students. My sincere thanks go to all of them,
without whom the great research on Distributed Constraints would have not
been possible. My deepest thanks to my students - Amir Gershman, Arnon
Gilboa, Eliezer Kaplanski, Oz Lavee, Michael Orlov, Igor Razgon, Moshe Za-
zon, and Roie Zivan. The theses of Oz, Michael, and Amir have also been used
extensively within the text of the relevant chapters. The chapter on ADOPT
(Chapter 15) is completely taken from Amir’s thesis. The extensive study
and wonderful implementations of ADOPT by Amir have made him in my
eyes the world’s expert on the ADOPT algorithm. The contents of the out-
standing thesis of Roie Zivan (which is still not written) are present in most
of the book, from our papers on search algorithms (Chapter 6, Chapter 7),
through our work on concurrent performance measures (Chapter 10), and to
his briliant work on asynchronous ordering heuristics (Chapter 9). I look back
in appreciation on the great research road we have covered together and in
excitement on what’s yet to come.

Beer-Sheva, July 2007 Amnon Meisels

Contents

1 Introduction . 1

2 Constraints Satisfaction Problems - CSPs 7
2.1 Defining CSPs . 8
2.2 CSP Algorithms and Techniques . 10
2.3 Behavior of CSP solving algorithms . 13

3 Constraints Optimization Problems - COPs 19
3.1 Branch and Bound (BnB) . 20
3.2 Branch and Bound + Arc-Consistency (BnB-AC) 23
3.3 Branch and Bound + AC* (BnB-AC*) . 24
3.4 Phase Transition in MaxCSPs . 25

4 Distributed Search . 27
4.1 Distributed search algorithms on DisCSPs 30
4.2 Introducing Asynchronous Backtracking . 33

5 Asynchronous Backtracking (ABT) . 37
5.1 A Complete 4-Queens Example . 40
5.2 The ABT Algorithm - Polynomial Storage 43
5.3 Correctness of ABT. 47
5.4 Improving Performance of ABT . 49

6 Asynchronous Forward-Checking . 53
6.1 AFC - Algorithm Description . 55
6.2 Correctness of AFC . 59
6.3 Improved Backtrack Method for AFC . 61

7 Concurrent Dynamic Backtracking . 63
7.1 4-Queens with Concurrent Search . 65
7.2 The ConcBT Algorithm . 67

7.2.1 A splitting of search space example 72

XII Contents

7.3 Concurrent Dynamic Backtracking . 75
7.4 Correctness of Concurrent Search . 79

8 Distributed Ordering Heuristics . 83
8.1 Ordering heuristics for Synchronous Backjumping 85

8.1.1 Heuristics with no additional messages 85
8.1.2 Heuristics with additional network overhead 86

8.2 Ordering heuristics for AFC . 86

9 Asynchronous Ordering Heuristics . 89
9.1 Specific Asynchronous Heuristics . 89
9.2 Dynamically ordered ABT . 91
9.3 Correctness of ABT_DO . 94
9.4 A new class of asynchronous heuristics . 97
9.5 Correctness of Retroactive ABT_DO . 102

10 Performance measures for distributed search 105
10.1 A Simple Example with Naive Methods . 107
10.2 Dividing concurrent search into rounds . 108
10.3 A More Complex Example for Computing NCCCs 110
10.4 A Model for Nonconcurrent Constraints Checks 111
10.5 The Cumulative Cost Algorithm (CCA) . 113
10.6 Realization of the Model by the CCA Algorithm 115

11 Experimental Evaluation of DisCSP Algorithms 121
11.1 Comparing Different Algorithms . 122

11.1.1 Asynchronous forward-checking vs. ABT 122
11.1.2 Experimental evaluation of ConcDB 123

11.2 Empirical Evaluation of Heuristic Ordering 125
11.2.1 Evaluation of synchronous ordering heuristics 126
11.2.2 Evaluation of dynamically ordered ABT 128
11.2.3 Retroactive ordering for ABT . 133

12 The Impact of Communication - Message Delays 137
12.1 Simulating Delayed Messages on DisCSPs 139

12.1.1 Adjusting the measuring method for dynamic ordering 140
12.2 Validity of AMDS . 141

13 Message Delays and DisCSP Search Algorithms 143
13.1 The Impact of Message Delays . 145
13.2 A summary of the Impact of Message Delays 154
13.3 Message Delays and Dynamic Ordering . 156

Contents XIII

14 Distributed Constraint Optimization Problems (DisCOPs) 159
14.1 Pseudo-trees . 160
14.2 Synchronous Branch and Bound (SBB) . 161
14.3 Distributed Pseudo-tree Optimization (DPOP) 162
14.4 Optimal Asynchronous Partial Overlay (OptAPO) 164

15 Asynchronous Optimization for DisCOPs 169
15.1 Lower and Upper Bounds in ADOPT . 170

15.1.1 Computing lower and upper bounds 171
15.2 Assigning Values . 172
15.3 The Threshold Mechanism . 175
15.4 ADOPT - Summary and Termination . 176
15.5 Special (and Surprising) Features of ADOPT 178

15.5.1 Updating context from lower priority agents 179
15.5.2 Pseudo-trees and concurrency of computation 180
15.5.3 Network load of ADOPT . 182

16 Asynchronous Forward-Bounding . 183
16.1 AFB - Overview . 183
16.2 Lower Bound Estimation for the Cost Increment 184
16.3 AFB - Algorithm Description . 186
16.4 The Time-Stamp Mechanism. 188
16.5 AFB - Proof of Correctness . 189
16.6 Concurrency in AFB . 190

17 Extending AFB - BackJumping . 193
17.1 Adding Value Ordering Heuristics . 194
17.2 Backjumping - Key Concepts . 194
17.3 A Backjumping Example . 196
17.4 The AFB-BJ Algorithm . 198
17.5 AFB-BJ - Proof of Correctness . 201

18 Empirical Evaluation of DisCOP algorithms 203
18.1 Empirical Evaluation of AFB and AFB-BJ 204

References . 209

Index . 215

List of Algorithms

3.1 The Branch and Bound Algorithm . 22
5.1 ABT algorithm (Complete Agent_V iews as Nogoods) 39
5.2 The ABT algorithm with polynomial space (from [9]) 44
6.1 AFC algorithm - receive and assign CPA . 56
6.2 AFC algorithm - backtracking and forward-checking 58
7.1 Main and Assign parts of Concurrent Search 70
7.2 Backtrack and Split procedures for concurrent search 71
7.3 Main methods for ConcDB . 76
7.4 Dynamic backtracking of ConcDB . 77
9.1 Additional code for the AWC algorithm . 90
9.2 The ABT_DO algorithm (first part) . 94
9.3 Two additional procedures of the ABT_DO algorithm 95
9.4 The retroactive ABT_DO algorithm (main) 102
9.5 The retroactive ABT_DO algorithm (secondpart) 103
10.1 Cumulative Cost Algorithm (CCA) . 115
12.1 The Mailer algorithm . 139
13.1 The distributed CBJ algorithm. 146
14.1 OptAPO - initialization and local resolution 165
14.2 Mediating an OptAPO session . 166
16.1 Main procedures of the AFB algorithm . 185
17.1 Initialization and message-handling procedures of AFB-BJ 198
17.2 The assigning and backtracking procedures of AFB-BJ 199

List of Figures

1.1 Starting positions for the distributed 4-queens problem 3
1.2 The resulting move of agent A3 . 4

2.1 A solvable CSP (LHS) and an unsolvable CSP (RHS) 9
2.2 A graph-coloring (solvable) CSP that is not arc-consistent 10
2.3 The phase transition for p1 = 1.0 (from [52]). 15
2.4 The phase transition for p1 = 0.5 (from [52]). 16
2.5 The phase transition region for p1 = 1.0 . 17

3.1 A COP example with four variables the first two are assigned . . 21
3.2 Phase-transition in MaxCSP algorithms (from [33]) 25

4.1 First cycle of ABT for 4-queens . 33
4.2 Second cycle of ABT for 4-queens . 34

5.1 Cycle 3 of ABT for 4-Q . 41
5.2 Cycles 4-5 of ABT 4-Q . 41
5.3 Cycle 6 of ABT for 4-Q . 41
5.4 Cycles 7-8 of ABT 4-Q . 41
5.5 Cycle 9 of ABT for 4-Q . 42
5.6 Cycle 10 (last) of ABT 4-Q . 42
5.7 An example DisCSP . 45
5.8 A detailed run of ABT on the example . 47
5.9 Non-concurrent computation steps of ABT - reading complete

mailboxes . 50

7.1 Simple Concurrent Search with two CPAs 64
7.2 First cycle of ConcBT on 4-queens . 66
7.3 Second cycle of ConcBT on 4-queens . 66
7.4 Cycle 3 of ConcBT on 4-queens . 67
7.5 Cycle 5 of ConcBT on 4-queens . 68

XVIII List of Figures

7.6 Cycle 6 of ConcBT on 4-queens . 69
7.7 Concurrent search with two CPAs - contents of data structures 73
7.8 Initial state and the state after the CPA travels five steps

without returning to its initializing agent . 74
7.9 Non-intersecting search spaces - two different CPAs 75

9.1 Heuristics example - state before backtrack 99
9.2 After reordering and using the NG-triggered heuristic 100

10.1 A simple DisCSP . 107
10.2 Time plot of computations . 108
10.3 A more complex example . 110
10.4 Time plot of the more complex example, in CCs 110
10.5 Dependencies graph for the example in Figure 10.3. Black

circles represent SCCs . 113
10.6 Dependency between two SCCs . 117

11.1 (a) Number of nonconcurent constraints checks in AFC, and
in ABT, (b) total number of messages sent for both algorithms . 123

11.2 Number of nonconcurrent constraint checks in different
versions of ConcBT . 124

11.3 Total number of messages sent in different versions of ConcBT . 125
11.4 Number of nonconcurrent constraint checks performed by

ConcDB, ABT, and CBJ on low-density DisCSPs 126
11.5 Total number of messages sent by ConcDB, ABT, and CBJ

on low-density DisCSPs . 127
11.6 (a) Nonconcurent constraints checks with different heuristics

of AFC. (b) Just the three ordering heuristics 127
11.7 Total number of messages sent by AFC with different ordering

heuristics vs. static order (p1 = 0.4) . 128
11.8 Nonconcurrent constraints checks performed by ABT and

ABT_DO using different ordering heuristics on low density
DisCSPs (p1 = 0.4). 129

11.9 Number of messages sent by ABT and ABT_DO on low
density DisCSPs (p1 = 0.4). 130

11.10Number of removed Nogoods as a result of order changes by
ABT_DO (p1 = 0.4) . 131

11.11Nonconcurrent constraints checks performed by different
versions of the ABT_DO ordering heuristics (p1 = 0.4) 132

11.12Total number of Nogoods that are removed as a result of
order changes by ABT_DO with different versions of ordering
heuristics (p1 = 0.4) . 133

11.13Nonconcurrent constraint checks performed and messages sent
by Retroactive ABT_DO and by ABT_DO on low-density
DisCSPs (p1 = 0.4) . 134

List of Figures XIX

11.14Non concurrent constraint checks performed and messages
sent by Retroactive ABT_DO with different limits on Nogood
size (p1 = 0.4) . 135

13.1 Nonconcurrent constraint checks with no message delays
(p1 = 0.4) . 147

13.2 Total number of messages with no message delays (p1 = 0.4) . . . 148
13.3 Nonconcurrent constraint checks with no message delays

(p1 = 0.7) . 149
13.4 Total number of messages with no message delays (p1 = 0.7) . . . 149
13.5 Nonconcurrent constraint checks with random message delays

(p1 = 0.4) . 150
13.6 A closer look at NCCCs performed by ABT and ConcDB,

with random message delays (p1 = 0.4) . 150
13.7 Total number of messages with random message delays

(p1 = 0.4) . 151
13.8 Nonconcurrent constraint checks with random message delays

(p1 = 0.7) . 151
13.9 A closer look on the NCCCs performed by of ABT and

ConcDB, with random message delays (p1 = 0.7) 152
13.10Total number of messages with random message delays

(p1 = 0.7) . 152
13.11Number of nonconcurrent CCs versus size of random message

delays (p1 = 0.4) . 153
13.12Number of nonconcurrent CCs versus size of random message

delays (p1 = 0.7) . 153
13.13Number of nonconcurrent CCs actualy performed versus size

of random message delays (p1 = 0.4) . 155
13.14Number of nonconcurrent CCs actualy performed versus size

of random message delays (p1 = 0.7) . 156
13.15Nonconcurrent constraint checks performed by ABT and

ABT_DO with and without message delays (from [73]) 157
13.16Number of messages sent by ABT and ABT_DO with and

without message delays (from [73]) . 157
13.17Nonconcurrent constraint checks performed by AWC with and

without message delays (p1 = 0.4) . 158
13.18Number of messages sent by AWC with and without message

delays (p1 = 0.4) . 158

14.1 The DPOP algorithm, part I - from [49] . 162
14.2 The DPOP algorithm, part II - from [49] . 163

15.1 The main ADOPT procedures (from [47]) 174
15.2 Procedures for updating thresholds in ADOPT [47] 177

XX List of Figures

15.3 An illustration of the VALUE and COST message flow in
ADOPT . On the left is a constraint problem, on the right a
schema of messages sent by ADOPT when solving the problem. 180

16.1 A simple DisCOP, demonstration . 186

17.1 An example DisCOP for backjumping . 197

18.1 Total non-concurrent computational steps by AFB, ADOPT
and SBB on low-density (p1=0.4) MaxDisCSPs 204

18.2 Total number of messages sent by AFB, ADOPT and SBB
on low-density (p1=0.4) MaxDisCSP . 205

18.3 (a) Number of noneconcurrent steps performed by ADOPT ,
AFB, AFB-minC, and AFB-BJ for high-density MaxDisCSP
(p1 = 0.7). (b) A closer look at p2 > 0.9 . 207

18.4 (a) Number of messages sent by ADOPT , AFB, AFB-minC,
and AFB-BJ for high-density MaxDisCSPs (p1 = 0.7). (b) A
closer look at p2 > 0.9 . 207

1

Introduction

The investigation of Distributed Constraints Satisfaction Problems (DisCSPs)
started only a decade ago. It focuses on constraints satisfaction problems
(CSPs) that are distributed among multiple agents. Imagine a large univer-
sity that includes many departments. The weekly schedule of classes is gen-
erated by each department, scheduling its classes and teachers for the whole
semester. A weekly schedule is a typical constraint satisfaction problem. Class
meetings are variables and the timeslots of the week are the domain of values
that have to be assigned to classes in order to generate a schedule. The funda-
mental constraints of timetabling require that two classes taught by the same
teacher have to be assigned different timeslots. Another common constraint
is to require that two meetings of the same class will be assigned to different
days of the week. In the university as a whole, the departments can be thought
of as agents that generate their departmental weekly schedules. The weekly
schedules of different departments are constrained by the fact that there are
students that select classes from these departments. This generates constraints
between departments and the generic scenario of a distributed CSP. Agents
own parts of the global problem (e.g., departmental schedules) and cooperate
in search of a global solution in which the constraints between departments
are satisfied. In order to solve such a distributed problem, all agents must co-
operate in a global search process. Search algorithms for a distributed problem
operate by agents performing assignments to their variables and exchanging
messages in order to check their assignments against those of constraining
agents.

Much research has been performed over the last 20 years on search al-
gorithms and heuristics for solving constrained search problems. All of this
work needs to be widely adapted, in order to become suitable for distributed
constraints. When a distributed set of agents run the search for a globally
consistent solution (or a global optimum, in distributed optimization prob-
lems in Chapter 14) they need to coordinate their operations by distributed
means. Even when the global search algorithm resembles simple backtrack-
ing, problems of concurrency pop up. Is the distributed algorithm complete

2 1 Introduction

(e.g., does it return a solution if one exists)? Is it free of deadlocks? Does it
necessarily terminate? All of these are typically complex problems that relate
to the distributed nature of distributed search algorithms.

This book is dedicated to the presentation of distributed search algorithms,
to their analysis, and to a comparative study of their performance and behav-
ior under a variety of distributed conditions. It includes work on distributed
constraints satifaction problems and on distributed constraints optimization
problems (DisCOPs). Problems of constraints optimization (COPs) arise in
cases where constraints have costs (values or weights) and the goal is to find
a minimal-cost solution. An important class of COPs is that of unsolvable
CSPs, where the goal is to find a complete assignment that has a minimal
number of constraint violations (conflicts). This family of problems has been
termed MaxCSP [33] and has been studied extensively as an example family
of COPs [36]. The centralized problems and algorithms for their solutions will
be described briefly in Chapter 3.

Moving to the distributed scenario, when agents hold parts of the COP,
we arrive at distributed constraints optimization problems - DisCOPs. Chap-
ter 14 introduces DisCOPs and the methods of search needed for their solu-
tion. In general, complete search methods for COPs are Branch and Bound
algorithms (BnBs). A simple extension is the distrbuted BnB, or DisBnB, al-
gorithm in Chapter 14. Three years ago an asynchronous branch and bound
algorithm for DisCOPs was proposed - the Asynchronous Distributed Op-
timization algorithm (ADOPT) [47]. ADOPT performs assignments and dis-
tributes information among agents in a completely asynchronous manner. It
turns out that, similarly to the case for DisCSPs, it is interesting to inves-
tigate the potential of asynchronous processing. In other words, to explore
algorithmic options that use asynchronous distributed processing combined
with sequential assignments. This ensures the processing of consistent par-
tial solutions and avoids redundant (asynchronous) computations relating to
intrinsically inconsistent partial solutions [22].

Let us try to get some feeling of the distributed nature of search. Consider
a 4-queens problem in which the four queens are independent agents. The
4-queens problem is quite well known. It requires one to put four queens on
a 4x4 chess board, so that none of the queens threatens any other. In search-
ing for such a solution (four nonthreatening positioned queens) one needs to
go over all possible positions of all queens over the 4x4 board. Let us try to
imagine a distributed scenario, one of many possible. Each agent/queen can
position itself at any square. Queens check for the compatibility of their po-
sitions with the positions of other queens by exchanging messages. For the
sake of simplicity let us assume that each agent only selects positions in one
specific row. This will simplify the search and will enable a partial search
space, where each agent has only four possible positions, which still contains
all solutions. Let us assume that each agent positions itself initially as in Fig-
ure 1.1. Next, each agent starts to exchange messages with the other agents
in order to check its compatibility with all agents’ positions. When conflict-

1 Introduction 3

ing positions are encountered, agents change their positions and attempt to
achieve compatibility.

Fig. 1.1. Starting positions for the distributed 4-queens problem

This example is extremely naive in that it does not consider an algorithm
for achieving a solution (e.g., a distributed search algorithm). Instead, it tries
to play around with a distributed scenario in order to ger some feeling for the
behavior of such scenarios. Assuming no specific algorithm, we’ll just continue
for a few steps. Let us take the case that each agent sends messages informing
all relevant agents about its position. For the 4-queens problem every agent is
constrained by every other agent. So, each agent sends a message to the other
three informing them of its position. After all messages have been sent and
received, all agents know the positions of all other agents.

Observe agent A1. It finds out that it is involved in a single conflict, with
agent A3. Agent A2 is involved in a single conflict with agent A3 and this is
also the number of conflicts discovered by agent A4. Agent A3 is the only agent
that finds out that it is involved in two conflicts - with agents A2 and A4.
Each agent has to decide what to do in this situation. Remember that this is
only an ilustrative example of a distributed search problem and not of a search
algorithm. Therefore, we are just exploring possible actions of agents. Let us
assume that agents that are involved in a conflict decide on the party that

4 1 Introduction

changes its position by giving priority to the agent that has more conflicts.
Among each pair of conflicting agents it is agent A3 that has more conflicts
than its conflicting partner. So, agent A3 decides to change its position and
it finds a position that has no conflicts for itself. It moves its position to that
conflict-free square and the result is the state in Figure 1.2. This is actually
a solution and none of the agents needs to change anything.

Fig. 1.2. The resulting move of agent A3

Please note that there are very many different ways to construct the pro-
tocol of the agents during search. Agents could exchange messages about their
intentions to select a value, to give one extreme example. They could wait for
all others to select values and then choose their own. All of these would be
different distributed search algorithms. The present book presents several ap-
proaches to design such search algorithms and we show that such algorithms
use protocols that have important features. A distributed search algorithm
must terminate. It must return a solution if such a solution exists and oth-
erwise return a no-solution message. These features and additional ones are
essential to distributed search algorithms and will be discussed in detail for
all the presented algorithms.

In the above very simple example there were exponentially many ways
to describe the run of the agents. We could have thought about agent A3

1 Introduction 5

making its decision after it received the message from A2, after it received
message from A4, before all messages arrived, and many more possibilities.
All of these options form the many ways in which a distributed computation
can be performed. Analyzing the behavior of distributed search algorithms
is therefore complex. Since any design of search algorithms needs tools for
measuring their performance and for comparing their behavior, we will dwell
on methods for measuring distributed search algorithms in Chapter 10. The
resulting measures will be used for comparisons of many algorithms that are
described in this book, in Chapter 11.

Another interesting question relates to the behavior of different distributed
search algorithms in the presence of communication problems. Communica-
tion problems can take a wide variety of forms - from total disconnection (i.e.
lost messages) to false or added messages and partially incorrect messages. In
order to remain in an area where the main focus is on the search algorithms
and not on methods for immuning or correcting messages, it is customary to
consider only delayed messages. In other words, the routine assumption of all
distributed search algorithms is that all messages arrive at their destinations
in finite time. The importance of studying the behavior of distributed search
algorithms under message delays, in addition to the simple fact that message
delays are common, can be understood as follows. All complete distributed
search algorithms (the vast majority of which will be presented in this book)
assume asynchronicity of operation. They guarantee the finding of a solution
if it exists, independently of the exact manner in which information is ex-
changed among all agents (as long as messages arrive at their destination in
finite time). All search problems are NP-Complete and consequently the worst
case run-time of distributed search algorithms is exponential in the number
of variables in the worst case. The acceptable way of comparing different dis-
tributed search algorithms and heurstics for these algorithms is to evaluate
their performance empirically. But, empirical evaluation depends on the set
of problems used, on the implementation of algorithms, and on the particular
runs of the distributed simulator (cf. [45, 72]). It is therefore extremely in-
teresting to perform the empirical evaluation of distributed search algorithms
also in distributed environments that include message delays. Incorporating
message delays into the experimental setup of distributed search algorithms is
presented in Chapter 12 and experimental results of algorithms in the presence
of message delays are described in Chapter 13.

2

Constraints Satisfaction Problems - CSPs

Constraints Satisfaction Problems (CSPs) have been studied intensely since
the early 1980s, as a paradigm on their own. The first important papers on cer-
tain fundamental properties of Constraints Networks were by Montanari and
by Freuder [21]. Papers on search algorithms were published by Elliot and Har-
alick [26] and later by Pearl and Dechter [15]. The body of work accumulated
during the 1980s has driven a community of researchers and a special track on
constraints-based reaoning in all important AI conferences. The field became
known as CSP and the next milestone was a paper by Patrick Prosser, which
formalized a large family of search algorithms for CSPs [51]. Several search
algorithms that fall under the term Intelligent Backtracking were proposed
early on. These include ideas like Lookahead [26] and BackJumping. Some
of these algorithms were proposed in the general AI search context. As we
will see, CSPs provide a well-defined search space definition, which enables
exact formulations of all search algorithms. This makes the field an excellent
laboratory for formulating new and complex ideas for search strategies. For
the same reason, distributed CSPs are a fundamental formalism for advancing
the whole field of distributed search.

The paper by Prosser [51] succeeded in defining a uniform structure for
the different algorithms that were proposed in a variety of forms during the
previous decade. The main result of [51] was a large set of hybrid algorithms
that were combined from fundamental ones by using the uniform structures of
the paper. The main core of search algorithms for CSPs are termed nowadays
on the basis of the terminology of [51]. These are the Backjumping (BJ) algo-
rithm and Conflict-based Backjumping (CBJ), and Forward-Checking (FC),
which is the simplest lookahead algorithm (cf. [26, 51]) and their best com-
bination, FC-CBJ. In the following sections we will present these algorithms
briefly, to set up a basis for the distributed algorithms that use versions of the
same ideas.

8 2 Constraints Satisfaction Problems - CSPs

2.1 Defining CSPs

Introductory texts on Constraints Satisfaction Problems (CSPs) can be found
in [16, 58] and the basic papers are [15, 51]. A CSP is a well-known NP-
complete problem [16], which is often used to represent and solve problems
such as timetabling [41, 43], meeting scheduling [60] and a variety of other
scheduling problems [12]. Formally, a CSP is a tuple < X,D,R >, where X is
a finite set of variables X1, X2, ... , Xm, and D is a set of domains D1, D2,...
, Dm. Each domain Di contains a finite set of values which can be assigned
to variable Xi. R is a set of relations (constraints) that specify for each value
vj ∈ Di, the set of allowed combinations for it to be assigned to variable Xi.
More formally, constraints or relations R are subsets of the Cartesian product
of the domains of the constrained variables. For a set of constrained variables
Xik

, Xjl
, ..., Xmn

, with domains of values for each variable Dik
, Djl

, ..., Dmn
,

the constraint R is defined as R ⊆ Dik
×Djl

×...×Dmn . A binary constraint
Rij between any two variables Xj and Xi is a subset of the Cartesian product
of their domains - Rij ⊆ Dj ×Di.

An assignment (or a label) is a pair < var, val >, where var is a variable
and val is a value from the domain of var that is assigned to it. A compound
label is a set of assignments of values to a set of variables. A solution P to
a CSP is a compound label that includes all variables, and which satisfies all
the constraints [16, 58].

Constraints can be either explicit, in the form of a listing of all forbidden
assignments combinations, or implicit. An implicit constraint can be, for ex-
ample, a set of rules that the assignments must follow. For example, X1 > X2

can be such a constraint if the value domains are numeric. The most commonly
used constraints are binary constraints. A CSP with only binary constraints
is called a binary CSP. A CSP can have more than a single solution. A CSP
may also have no solutions at all, in which case it is declared to be unsolvable.

In Figure 2.1 we have two CSPs. Each CSP has four variables X1, X2, X3, X4.
The domains of values of all variables contain the three values: r, g, b (not
shown). Constraints are represented by lines connecting variables. As we can
see, all constraints are binary. All constraints are inequality constraints (6=).
The CSP on the left-hand side is solvable. The assignment (X1 = r, X2 =
g,X3 = b, X4 = r), for example, is a solution. There is more than one solution
to this CSP, for example (X1 = g,X2 = r, X3 = b, X4 = g) is also a solution.
In contrast, the CSP on the right-hand side (RHS) is unsolvable. There does
not exist an assignment of values to all variables that satisfies all constraints.
One can say that the CSP on the RHS of Figure 2.1 is overconstrained.

The size of the search space for solving CSPs is exponential in the number
of variables, in the worst case. The base of the exponential is the domain
size of variables (e.g., the number of possible assignments per variable). This
led researchers to propose methods that have the potential to find equivalent
versions of the problem that have smaller domains of values. The general idea
is to check values of the CSP and remove those values that can never be

2.1 Defining CSPs 9

Fig. 2.1. A solvable CSP (LHS) and an unsolvable CSP (RHS)

part of a complete assignment that is a solution to the CSP. If such values
are removed from the domains of their variables, one achieves two goals. On
the one hand, the number of solutions to the problem remains exactly the
same. On the other hand, some of the domains of values become smaller and
thus the search space is reduced. The operation of removal of values that
are inconsistent (e.g., cannot participate in any solution) is termed achieving
local consistency. It is important to note that during a process of achieving
local consistency the domain of a variable may become empty. In such a case
the problem has been proved to be unsolvable [16]. One can say intuitively
that in such a case a real saving of computation has been achieved, instead
of exponential in the number of variables just exponential in the number of
variables in a local neighbourhood (related to the specific local sonsistency
that was used).

Consider the problem in Figure 2.2. There are three variables, each with its
domain of values and all constraints are inequalities (e.g., a coloring problem).
The value R of the variable A at the top of the graph is not compatible with
any of the values of the variable B, at the bottom left of the graph. One
can say that if the value R is removed from the domain of A, the resulting
problem will have exactly the same solutions as the original problem. The
process of removal of values that do not participate in solutions of a CSP is

10 2 Constraints Satisfaction Problems - CSPs

based on checking consistencies. In our example the consistency is that of pairs
of values in constrained variables. The constrained pair of variables (A, B) is
checked for compatible pairs of assignments and (as we explained) the value
R in A is found to have no compatible value in the domain of variable B. This
particular type of check is called Arc Consistency, as it checks consistency over
"arcs" of the constraints graph (for extensive discussion of arc-consistency
see [6, 16, 58]). The process of enforcing arc-consistency can be done as a
preprocessing phase, before a search for a solution to the CSP is initiated. It
can also be performed at multiple stages during search. Consistencies can also
be of higher degree than a single arc. One could check, for example, triplets
of variables for consistent assignments [16]. In our description of distributed
constraints we will refer to ideas of enforcing local consistency during search
in a similar manner in which they are used in centralized CSPs (cf. [31, 51]).

Fig. 2.2. A graph-coloring (solvable) CSP that is not arc-consistent

2.2 CSP Algorithms and Techniques

Practically all complete search algorithms for CSPs are based on the back-
tracking algorithm. In the backtracking algorithm, there are two possible steps,

2.2 CSP Algorithms and Techniques 11

an assignment step and a backtrack step. In an assignment step, the algorithm
assigns a value to one of the variables, and checks that no constraint is vio-
lated (broken) due to this new assignment. If this is true, then the next step
is another assignment step, or termination if all variables are assigned (a solu-
tion was found). If a constraint was violated, a backtrack step undoes the last
assignment made and the next value in this unassigned variable’s domain is
assigned instead, if such a value exists. If the domain of the current variable is
exhausted and there is no next value to try to assign, another backtrack step
is taken. The backtracking algorithm is a depth-first search, on the search tree
of possible value assignments to all variables. In the worst case, the algorithm
requires exponential time in the number of variables, but only linear space
[16, 31, 58].

Backtracking algorithms can be improved in two general ways. One way
is to select a variable to backtrack to, that is not necessarily the last variable
to have been assigned [31, 51]. The other way is to prune the search space by
the use of lookahead methods. Lookahead methods were proposed by Haralick
and Elliot in [26], categorized by depth, and will be described in more detail
below.

Other methods of selective backtracking involve the maintenance of No-
goods and explanations [23]. The family of algorithms that prune the search
space by selective backward moves is commonly termed backjumping. These
algorithms include simple backjumping (BJ), conflict-based backjumping
(CBJ) [51] and Dynamic Backtracking (DBT) [23]. They have been shown
by [31] always to visit no more nodes in the search space than simple back-
tracking.

The simplest form of lookahead, as analyzed by Haralick and Elliot, was
later termed Forward Checking (FC) [51]. When the search process performs
an instantiation (assignment) of a variable, it looks ahead towards the future
(unassigned) variables, and removes from their current domain values that
are incompatible with the tested instantiation. If the current domain of some
future variable becomes empty, the combination of the assignments made so
far would conflict with all value assignments of that variable, and thus the
current state is inconsistent, and a backtrack is performed [51]. The current
partial assignment cannot be extended to a solution of the CSP because the
domain of some variable became empty and no assignment of this variable is
compatible with the current partial assignment (cf. [31]). The current partial
assignment is called a Nogood and the notion will be used extensively in all
DisCSP algorithms.

When backtracking, it is important to undo all the value eliminations that
were performed because of the trial instantiation. This is an immediate over-
head of all lookahead algorithms (such as FC). The goal of the FC algorithm
is to fail early by detecting inconsistencies as early as possible, thus saving
exploration of dead ends. Forward checking performs more computation per
assignment than the standard backtracking algorithm. The hope is that this
will pay off by performing less assignments overall during the search.

12 2 Constraints Satisfaction Problems - CSPs

Forward checking is the simplest method of maintaining local consistency
(i.e., checking that the current state of the unassigned part of the search
space is consistent). Exactly what is consistent is defined by the method used.
Besides FC, many other methods for maintaining local consistency of the
unassigned part of the search space exist. One can define two types of local
consistency that can be used to induce a stronger lookahead than forward-
checking.

• Arc consistency. The assignment Xi = a is arc-consistent with respect to
constraint Cij (the constraint between Xi and Xj) if there is a value b ∈ Dj

such that Xi = a,Xj = b satisfy Cij . Such a value b is called a support
of a. Variable Xi is arc-consistent if all its values are arc consistent with
respect to every binary constraint involving Xi. A CSP is arc-consistent
(AC) if every variable is arc-consistent.

• Directed arc consistency (DAC). A variable Xi is DAC if all its values
are arc-consistent with respect to every binary constraint involving Xi and
Xj where j > i. This is a directed consistency and the check for existence
of support values is only performed in one direction of the constraints. A
CSP may be DAC for one ordering of the variables but not for another.
Obviously AC is a stronger property than DAC.

Arc-inconsistent values can be removed, because they cannot participate
in any solution. Enforcing AC or DAC does not guarantee that the CSP
contains a solution. However, if a CSP is not AC or DAC, then it can be
transformed into an equivalent CSP that is AC or DAC and that contains
all the solutions of the original CSP [16]. AC (or DAC) can be achieved by
removing arc inconsistent values until a fixed point is reached. If enforcing AC
(or DAC) yields an empty domain, the problem is proven to be unsolvable.
A major advantage of transforming the CSP into an equivalent AC (or DAC)
CSP is that the resulting equivalent CSP may be of smaller size (e.g., its
domains contain fewer values). There are several AC-enforcing algorithms.
Two well-known algorithms are: AC3 [1] and AC2001 [5].

It is important to note that stronger methods for maintaining consistency
do not always produce better performance. A tradeoff exists between the
number of assignments performed, and the computational effort following each
assignment. Enforcing stronger consistency may lead to fewer assignments
done, as fewer dead-ends will be explored. However, to check and maintain
consistency, some computational effort is required following each assignment.

We will refer back to these methods later on, when discussing how to
maintain local consistency in optimization problems. Obviously the present
exposition does not come near to summarizing all CSP algorithms. We choose
to mention only what is most relevant for distributed search. For more infor-
mation, one can consult the books by Dechter and Tsang [16, 58].

2.3 Behavior of CSP solving algorithms 13

2.3 Behavior of CSP solving algorithms

CSPs are NP-complete problems. Therefore, evaluating the performance of
algorithms by theoretical measures will not be of much use. In order to evalu-
ate CSP solvers, empirical evaluation is often used. Performance is measured
over a predefined set of problems. In order not to rely on implementation de-
tails that might influence results (such as implementation efficiency, processor
speed, background processes running, etc.) performance is evaluated using a
logical measure. The number of constraint checks (CCs) is one such measure
that is frequently used. Another is the number of assignments made [31, 52].

The above two measures relate to the search process and search space,
rather than to the specific implementation. A search algorithm that belongs
to the backtracking family is a depth-first procedure. It assigns variables se-
quentially, checking each assignment in turn for consistency with former as-
signments [16]. Algorithms differ in their decision of how to backtrack (e.g.,
of forms of backjumping) or in their forms of checking the consistency of unas-
signed variables (e.g., lookahead). The main part of computation that is com-
mon to all search algorithms is to check consistency against the current partial
assignment. This computation is composed of a series of checks of pairs of as-
signments (for binary CSPs). Each such check can be thought of as an O(1)
operation, accessing the constraint matrix to find whether a pair of values are
compatible. By counting these operations all CSP search algorithms can be
measured on a uniform scale.

The number of assignments performed by a search algorithm is also an
implementation-independent measure. Here one considers the trajectory of
the algorithm in the search space. Assigning variables one by one, any search
algorithm checks for consistency and then proceeds to the next variable. When
it gets to a dead-end it backtracks and each reassignment of a variable is
counted by this measure. It is clear that the number of assignments will be
lower for algorithms that prune the search space efficiently. However, if prun-
ing the search tree is based on additional computations at each node visited,
the resulting procedure does not necessarily perform fewer computations. In
other words, it is an interesting question whether a lookahead CSP search al-
gorithm will be faster. It has been shown theoretically that forward checking
(FC) performs no more assignments than simple backtracking [31]. Indepen-
dently, it has been shown empirically that FC outperforms BT on randomly
generated CSPs.

It is of interest to investigate the dependency of a random problem’s dif-
ficulty on the parameters of the problems. The number of variables and the
domain size obviously influence the problem difficulty, as the search space
grows exponentially with these two parameters. However, even for a fixed
number of variables and a fixed domain size, the problems vary wildly, due to
the nature of the constraints. For a fixed-size problem, one problem can be ex-
tremely easy to solve, if there are almost no constraints, while another may be
highly constrained and require more effort until a solution is found. Over the

14 2 Constraints Satisfaction Problems - CSPs

last decade a uniform set up for testing CSP algorithms has been established.
Experiments are commonly performed on randomly generated binary CSPs.
The problems are randomly generated using four parameters: < n, k, p1, p2 >,
where n is the number of variables, k is the uniform domain size, and p1 is
the probability of a constraint existing between any two variables Xi and Xj .
If Xi and Xj are constrained, any two value assignments a ∈ Di and b ∈ Dj

are forbidden with probability p2 [52]. p1 is called the constraint density,
and p2 is called the constraint tightness.

When evaluating algorithms on such randomly generated problems, it was
discovered that one of the four parameters is a critical parameter. When three
of the parameters n, k, and p1 are held fixed, the critical parameter is p2 (the
tightness). When p2 varies between 0 and 1 the problem difficulty exhibits
a phase transition. The average difficulty of problems goes from easy, to
difficult, to easy. When measuring the run time of the algorithm by counting
the number of constraint checks, the run time varies with the value of the
tightness p2 through three regions - low-high-low. All algorithms finish their
execution very fast for very low values of p2 (only a handful of value combi-
nations are forbidden and most full assignments are in fact solutions). Run
time increases exponentially with increasing p2 up to some peak, after which
it starts to decrease. Figure 2.3 shows the phase transition for n = 20, k = 10,
p1 = 1.0 (presented in Prosser [52]). Figure 2.4 presents the phase transition
for similar random problems with a density of p1 = 0.5, the phase transition
peak is at roughly p2 = 0.4 (for these parameters).

To the left of the left vertical bar in Figure 2.5 (p2 = 0.35) all problems
are solvable, to the right of the right vertical bar (p2 = 0.41) all problems are
unsolvable. The area between the two vertical bars contains both solvable and
unsolvable problems, this area is also called the “mushy region” by [52, 56]. It
is in this region that the average search effort is maximal. The algorithm used,
for Figure 2.5 is an enhanced variation of the forward-checking algorithm.

The existence of the phase transition is explained intuitively as follows.
For low values of the tightness p2, the constraints are very loose and the
problems are easy. Increasing the constraint tightness naturally increases the
difficulty. As fewer full assignments become solutions, it becomes increasingly
hard to find a full assignment that is consistent (a solution). When the value
of p2 is high enough, the problems become easier, in that the algorithm does
not need to search the entire exponential search space. The problems are
overconstrained and have no solution. The algorithm reaches an inconsistent
state higher up the search tree, thus pruning more of the search space.

The phase transition (mushy region) at the center of the peak contains a
mix of solvable and unsolvable problems. Intuitively these are problems with
either few solutions (so they are hard to find and require searching through
most of the search space to reach), or unsolvable problems (that are consistent
up until a very late stage of the assignment process, thus forcing the search
process to explore most of it before declaring there is no solution).

2.3 Behavior of CSP solving algorithms 15

Fig. 2.3. The phase transition for p1 = 1.0 (from [52]).

The phase transition of problem difficulty is very important. It was also dis-
covered for distributed CSPs and can serve as a very good feature for checking
the validity of performance measures in the distributed domain. Furthermore,
the exponential growth in difficulty of finding the first solution to a CSP is an
excellent differentiating criterion among search algorithms. In order to achieve
a substantial gain in efficiency, algorithms need to be tested on hard problem
instances. For randomly generated CSPs these are at p2 values that are near
the critical value (e.g., near the peak). Throughout this book when the per-
formance of algorithms is compared we will use random CSPs and observe
the different behavior of the algorithms being compared for hard problem in-
stances. It is for these problems that one wants to design a more-intelligent
algorithm and a better heuristic (see Chapter 11).

It is also important to mention that a similar phenomenon has been
also discovered for some constraint optimization (COP) and distributed con-
straints optimization (DisCOP) algorithms. The important difference is that
a phase transition exists for CSPs for all algorithms. For constraint optimiza-
tion problems (COPs) a phase transition was found only for certain lookahead
search algorithms [33, 36]. Chapter 3 describes constraints optimization prob-
lems (COPs) and algorithms for finding an optimal solution. These algorithms
belong to the Branch and Bound family, but use additional lookahead tech-

16 2 Constraints Satisfaction Problems - CSPs

Fig. 2.4. The phase transition for p1 = 0.5 (from [52]).

niques. The deeper methods of lookahead turn out to produce a specific form
of a phase transition for COPs [33]. Chapter 3 presents the latest results on
COP algorithms. Chapter 16 presents the first distributed optimization algo-
rithm that demonstrates a phase transition for Distributed COPs [22]. As will
be shown in Chapter 18, standard asynchronous distributed optimization algo-
rithms do not produce a phase transition for hard instances of DisCOPs [22].

2.3 Behavior of CSP solving algorithms 17

Fig. 2.5. The phase transition region for p1 = 1.0

3

Constraints Optimization Problems - COPs

Formally, a COP is a tuple < X,D,R >. X is a finite set of variables
X1,X2,...,Xm. D is a set of domains D1, D2, ... , Dm. Each domain Di con-
tains the finite set of values which can be assigned to variable Xi. R is a set
of relations (constraints). Each constraint involves some variables and defines
a non-negative cost for every possible value combination of these variables. A
binary constraint refers to exactly two variables. A binary COP is a COP in
which all constraints are binary. An assignment (or a label) is a pair includ-
ing a variable, and a value from that variable’s domain. A partial assignment
(PA) is a set of assignments in which each variable appears at most once. The
cost of a partial assignment is computed over all constraints that involve only
variables that appear in the partial assignment. Each such constraint defines
some cost for the value assignments detailed in the partial assignment. All
these costs are accumulated, and the sum is denoted as the cost of the partial
assignment. A full assignment is a partial assignment that includes all the
variables. A solution is a full assignment with minimal cost.

Intuitively, the optimization problem is harder than the satisfaction prob-
lems (but both are NP-complete). One can gain some intuition into these two
problems along the following lines. The solving of a satisfaction problem can
be achieved by modeling the problem as a COP combined with the assign-
ment of some positive cost to all constraints defined by the CSP. Solving this
problem by using a COP solver would return some solution. If this solution
has a cost of zero, it is also a solution to the CSP, otherwise the CSP has no
solution. In the other direction, observe the following. Both CSP solvers and
COP solvers can stop once they find a full assignment that has no conflicts
(a cost of zero in the COP case). However, a CSP solver can maintain local
consistency during the search. Like the backtracking algorithm, it can ensure
(at the very least) that the partial assignments made so far have no conflict
among themselves. A COP solver cannot stop at this point, since it is possi-
ble that the current conflicting assignments are part of a solution (which has
a cost greater than zero). So a COP solver may need to search more of the
search space.

20 3 Constraints Optimization Problems - COPs

It is important to mention a specific problem that can be solved as a
COP, because many of the COP and DisCOP algorithms are evaluated
on this family of problems. MaxCSPs are standard CSP problems, where a
solution is a full assignment with the least amount of violated constraints (e.g.
conflicts). A MaxCSP is equivalent to a COP with all costs being either zero
or one. A common special case of MaxCSPs is the graph-coloring problem.
The input is a graph G and a number k. The satisfaction problem is to color
each vertice in G with a single color out of the k possible colors in such a
way that no two neighboring vertices have the same color. In the optimization
problem, the goal is to minimize the number of vertex pairs connected by an
edge that are colored by the same color.

Graph coloring problems are often characterized by three parameters:
n, k, d. n is the number of vertices, k is the number of colors, and d is the
link density (the average number of neighbors per vertex). Since-graph color-
ing problems are a subfamily of CSPs, one can use these these parameters to
infer the parameters of the equivalent constraints satisfaction problem. The
problem density (p1) and tightness (p2). The number of constraints (e.g., edges
or links) is nd/2. Divide that by the maximal number of possible constraints
n(n − 1)/2 to compute the problem density - d/(n − 1). The problem tight-
ness is determined by the number of colors k, since between two neighboring
vertices, all k2 possible color assignment combinations are good, except for
exactly k of them. Therefore, p2 = 1/k and p1 = d/(n−1). This simple calcu-
lation is useful because many times in the literature graph coloring-problems
are used for evaluating search algorithms. Bearing in mind this simple calcu-
lation, one can immediately see into what region of difficulty these problems
fall. For example, take 3-coloring of graphs with 50 nodes and link densities
of d = 5. The equivalent constraint density is p1 = 0.1. The tightness of these
graph coloring problems is p2 = 1/3 and we know that for CSPs with density
of p1 = 0.1 problems with such low tightness are relatively easy (i.e., far away
from the peak of hard instances). Still, many experimental evaluations of both
distributed CSPs and distributed COPs in the literature use 3-coloring.

In order to achieve a basic understanding of COPs and methods for their
solution, some of the algorithms and techniques developed for COPs are pre-
sented next.

3.1 Branch and Bound (BnB)

Branch and Bound (BnB) is the basic COP solver, similarly to the back-
tracking algorithm - the basic CSP solver - it can be extended into more
sophisticated algorithms.

The general scheme of the algorithm is presented in Algorithm 3.1, and is
based on the pseudo-code given in [36]. X is the set of all variables, D is the
set of all domains, C is the set of all constraints, PA(t) is the current partial
assignment, LB is the lower bound, and UB is the upper bound. In the first

3.1 Branch and Bound (BnB) 21

call to the function BranchAndBound the parameter LB is set to zero and UB
is set to infinity.

A lower bound (LB) for a current partial assignment is an admissible es-
timation of the lowest-cost full assignment extended from the partial assign-
ments made so far. Admissible means that it is always smaller than or equal to
the true cost of such an assignment. In the BnB algorithm, the LB equals the
accumulated cost of the assignments made so far, which is of course always
smaller or equal to the cost of any full assignment extended from these assign-
ments. Consider the COP in Figure 3.1. There are a total of four variables
ordered by V1, V2, . . . V4. The first two are assigned and their assigned values
are circled. The partial assignment is < V1, b >,< V2, a >. Each value of the
example COP has a value associated with it. The cost of the first assignment
in Figure 3.1 is 1 and of the secnd assignment is 2. In order to compute the to-
tal cost of the partial assignment we need to know the cost of the constraints.
Let us assume for simplicity that all constraints have a uniform cost of 3. All
values connected by a line are constrained and all disconnected values are not
constrained (i.e., their assignment incurs a cost of 0). The total cost of the
partial assignment in figure 3.1 is therefore 1 + 2 + 3 = 6. This value can also
serve as the lower bound on any complete assignment that extends the partial
assignment in Figure 3.1.

Fig. 3.1. A COP example with four variables the first two are assigned

22 3 Constraints Optimization Problems - COPs

An upper bound (UB) equals the cost of the best (lowest-cost) full as-
signment found during the search. Initially, before the search begins, no full
assignment was found, and so this bound is set to infinity. As search progresses
and full assignment combinations are explored, this bound decreases.

A partial assignment, for which LB > UB cannot lead to a solution, as any
full assignment extended from it would cost at least LB (and a lower cost full
assignment was already found, costing UB). A partial assignment for which
LB = UB should not be extended since any full assignment extended from it
would cost at least LB. Extending it cannot lead to a better full assignment.

The algorithm traverses the search tree in a depth-first manner. After
picking an assignment for the current variable Xi, the new subproblem is
constructed. The procedure LookAhead transforms the current problem into
a new subproblem that includes the assignment Xi = a. If that subproblem
is locally consistent, the search continues by recursively trying to solve the
sub-problem. The algorithm returns the cost of the solution to the problem.
The best full assignment found for the subproblem is set as the new upper
bound in line 7. The procedure LocalConsist returns true if the given problem
is consistent (should be explored) or false if there is a dead-end. This is done
by checking if the accumulated cost of the partial assignments made so far
exceeds the upper bound (line 14).

Algorithm 3.1: The Branch and Bound Algorithm
Function BranchAndBound(PA, LB, UB, X, D, C):
1. if (X = ∅) then return LB
2. i ← ChooseVar(X)
3. foreach a ∈ Di do
4. DD←D ; CC←C ; nPA←PA + (Xi = a) ; nLB ← LB + UnaryCost(a)
5. LookAhead(i, a, CC)
6. if (LocalConsist(nLB, UB, X− {i}, DD, CC)) then
7. UB ← BranchAndBound(nPA, nLB, UB, X− {i}, DD, CC)
8. return UB

Procedure LookAhead(i, a, C):
9. CC← CC− {Ci}
10. foreach Cij ∈ CC do
11. foreach b ∈ Dj do
12. Cj(b)← Cj(b) + Cij(a, b)
13. CC← CC− {Cij}

Function LocalConsist(LB, UB, X, D, C):
14. return (UB > LB)

3.2 Branch and Bound + Arc-Consistency (BnB-AC) 23

3.2 Branch and Bound + Arc-Consistency (BnB-AC)

In the past decade Larrosa and others investigated methods for solving COPs
(sometimes refereed to as Weighted CSPs - WCSP - and MaxCSPs) [33–36].
The main result of this research takes the form of a framework for maintain-
ing local consistency during branch and bound search. Several methods for
local consistency were proposed, and their performance evaluated. The most
basic form of maintaining local consistency, is the one used by the Branch and
Bound algorithm (in Section 3.1), which checks that the cost of the assign-
ments made so far does not exceed the upper bound.

A stronger form of maintaining local consistency during BnB search is to
maintain arc consistency. Arc consistency as defined in Chapter 2.1 does not
fit COPs, since two conflicting assignments can still be part of a solution. An
extension of the definition was proposed by Larrosa et al. [36]. The paper by
Larrosa et al. refers to binary COPs that may also include unary constraints.
Such a constraint simply defines a cost for every value of a variable. If the
variable is assigned a value, the unary cost of that value is added to the
global cost of the current partial assignment. The algorithm in [36] uses a
process called projection of constraints. This projection involves transferring
costs between unary and binary constraints. If a binary constraint between
variables Xi and Xj assigns a cost greater or equal to c for some specific
value a ∈ Di and every value b ∈ Dj , it is possible to project this cost on
a unary constraint involving Xi as follows. From the binary constraint, c is
reduced from the cost of all assignment pairs including a ∈ Di, and in the
unary constraint of Xi the cost c is added to the cost assigned to the value a.
An intuitive explanation is the following. If Xi assigns a, then no matter what
Xj assigns, the constraint between them would cost at least c. This process
can also be applied from unary into binary constraints. If a value a ∈ Di has a
unary cost of c, then we can remove this unary cost, pick some other variable
Xj and add c to the binary constraint between the assignment Xi = a and
every value of Xj .

Larrosa et al. [36] define node consistency for constraints optimization
problems. A COP with an upper bound UB is node-consistent (NC) if the
unary cost of every value of every variable is smaller than UB. A COP with
upper bound UB is arc-consistent (AC) if it is NC and, for every two variables
Xi and Xj , and every value a ∈ Di, there exists a value b ∈ Dj such that the
binary cost of assigning a and b equals zero (b is called the support of a in
such a case). These definitions are reduced to the classical CSP definitions if
we set UB = 1.

If a COP is not NC, we can remove all values with cost greater or equal
to UB. The resulting COP will contain all full assignments with cost lower
than UB. This is trivially correct since values with unary costs of UB or
more cannot be part of assignments that cost less than UB. If a COP is not
AC because of a value a ∈ Di that has no supporting value in Dj , then by
projecting the costs of this binary constraint onto the unary cost of a, we can

24 3 Constraints Optimization Problems - COPs

reach an equivalent COP that is hopefully AC (it is still possible for it to be
not NC [36]).

These ideas are implemented in [36] by the W-AC3 and the W-AC2001
algorithms. These algorithms enforce arc consistency in COPs by replacing
the LocalConsist method in the BnB algorithm. Arc consistency is achieved
by pruning node-inconsistent values and projecting binary constraints over
unary constraints until the property is satisfied. It is important to note that
there are several arc-consistent problems that can be obtained from an arc-
inconsistent problem. The result will depend on the order in which values are
pruned and the constraints are projected.

The experimental evaluation reported in [36] shows that a BnB algorithm
that maintains this form of AC has a far superior performance to that of
a BnB that only enforces NC (or none at all as in Algorithm 3.1). These
important results, from centralized COPs, will later be used for an innovative
distributed optimization algorithm that will be described in Chapter 16. It
is based on distributed methods for maintaining bounds consistency during
DisCOP search and exhibits a large improvement over all DisCOP solvers.

3.3 Branch and Bound + AC* (BnB-AC*)

A stronger form of maintaining local consistency is also presented in [36].
The intuition behind it is as follows. Suppose all values of a variable have a
unary cost greater than c. Any assignment to this variable would therefore
cost at least c, but this cost is not known by the search process until it actually
performs the assignment. It is possible to add this cost to the lower bound even
before an assignment is made, and potentially prune subspaces of the search
tree sooner. A global constraint is constructed, and this constraint assigns a
cost to be added to any full assignment performed. Initially this cost is zero,
but once a variable such as the above is discovered, the cost c can be added
to it, and subtracted from the unary constraint of all values of that variable.

More formally, a COP with an upper bound UB is NC*, if the unary cost
of every value plus the cost of the global constraint is smaller than UB and
every variable has a value with unary cost zero. A COP with upper bound
UB is AC* if it is both AC and NC*.

To transform a COP that is not NC* into one that is NC*, one needs to
project costs from unary constraints to the global constraint until the variables
all have a value with unary cost zero. Then, values with too high a unary
cost are removed (similarly to maintaining NC). This produces the W-NC*
algorithm [36].

To enforce AC*, we have the W-AC* algorithm [36]. First the problem
is enforced to be NC*, then projections from binary constraints onto unary
constraints are performed (enforcing AC). This may cause re-enforcing NC*
by projecting from the updated unary constraints to the global constraint.

3.4 Phase Transition in MaxCSPs 25

If the global constraint was increased, then NC* may be violated at other
variables, and so they must be checked for NC* again.

The experimental evaluation reported in [36] shows that BnB that main-
tains AC* slightly outperforms the BnB version that maintains AC.

3.4 Phase Transition in MaxCSPs

Fig. 3.2. Phase-transition in MaxCSP algorithms (from [33])

Constraints optimization problems behave very differently than CSPs
when the tightness of randomly generated COPs is varied. As the tightness
increases, so does the problem difficulty as realized by the total number of
constraints checks (CCs) or the run time. This measure keeps increasing with
problem tightness in an unbounded way. In fact, for problems with p2 ≥ 0.9
the run time for problems with reasonable size typically gets too large to insert
into the graph for all p2 values [33]. In other words, unlike CSPs, the basic
algorithms for COPs do not produce any phase transition in their perfor-
mance. From experiments on MaxCSPs it appears that only some algorithms
produce a behavior that resembles a phase transition. Larrosa and Meseguer
found that, when a BnB-AC algorithm is used, the search effort decreases for

26 3 Constraints Optimization Problems - COPs

ever growing problem tightness [33]. The behavior of simple algorithms for
solving MaxCSPs, such as Algorithm 3.1, is the following. As the tightness
is growing, so does the average difficulty of solving problem instances. For
simple algorithms like BnB (or even NC in figure 3.2), the run time of the
algorithm diverges. Surprisingly, when deep lookahead methods are used the
run time of the “smarter” algorithms reaches a peak and then decreases. This
is evident for all three lookahead algorithms in figure 3.2 (from [33]).

According to [36], only algorithms which enforce a strong enough method of
local consistency (include the costs of constraints between pairs of unassigned
variables in their lookahead computation of bounds) produce this phenomena.
This behavior was reported for the BnB variation that enforces AC as well as
the BnB variation that enforces AC*. It is important to mention that BnB
that enforces only NC does not produce this behavior (as was mentioned
above for the figure). The experimental results on MaxCSP reported in [33]
are presented in Figure 3.2.

4

Distributed Search

Distributed constraint satisfaction problems (DisCSPs) are composed of
agents, each holding its local constraints network, that are connected by con-
straints among variables of different agents. Agents assign values to variables,
attempting to generate a locally consistent assignment that is also consistent
with all constraints between agents (cf. [57, 61, 64]). To achieve this goal,
agents check the value assignments to their variables for local consistency
and exchange messages with other agents to check the consistency of their
proposed assignments against constraints with variables owned by different
agents [8].

Distributed CSPs are an elegant model for many everyday combinatorial
problems that are distributed by nature. Take for example a large hospital
that is composed of many wards. Each ward constructs a weekly timetable
assigning its nurses to shifts. The construction of a weekly timetable involves
solving a constraint satisfaction problem for each ward. Some of the nurses in
every ward are qualified to work in the emergency room. Hospital regulations
require a certain number of qualified nurses (e.g., for emergency room) on
each shift. This imposes constraints among the timetables of different wards
and generates a complex Distributed CSP [30, 57].

An example of a large-scale DisCSP started as a defence agency advanced
research project (DARPA) problem presented publicly on the web in 2000.
The description here is from [3]. The problem has n sensors and m targets,
where a target is tracked if k sensors are tracking it at the same time. The
major constraint is that a sensor can only track one target at a time. Bejar
et al. formulated this problem as a DisCSP as follows. Each sensor is repre-
sented by an agent. Each agent has variables for every target that is in range.
Variables are assigned the value 1 if the agent selects to track them and 0
otherwise. Each agent is constrained internally to have only one variable with
the value 1. Constraints between agents are such that for every target, there
are at least k agents that have assigned 1 to the value of their variable that
corresponds to that target. Bejar et al. termed this distributed constraints
problem SensorCSP [3].

28 4 Distributed Search

A search procedure for a consistent assignment of all agents in a distributed
CSP (DisCSP), is a distributed algorithm. All agents cooperate in the search
for a globally consistent solution. The solution involves assignments of all
agents to all their variables and exchange of information among all agents,
to check the consistency of assignments with constraints among agents. An
intuitive way to make the distributed search process for DisCSPs efficient is
to enable agents to compute concurrently. Concurrent computation by agents
can result in a shorter overall time of computation for finding a solution.

Concurrency of computation during search for DisCSPs is perhaps the
most important research topic in the field. The present book focuses on
DisCSP search as a model for distributed search in general. In this regard one
can delineate several aspects of concurrency that hold center stage in the field
of distributed search. First and foremost is the efficiency of the distributed
search algorithms. The next important aspect is the analysis and design of
concurrent measures of performance for all algorithms. Due to the distributed
nature of the computation, these measures must be general enough to include
the impact of communication problems, such as message delays. Last but not
least, one must deal with purely distributed aspects of DisCSP search - the
privacy of agents’ data and the dynamic nature of the problems.

An interesting way to describe the advancement of DisCSP research in
the last six years, which is very much at the center of the present book, is the
following. Search algorithms have been central to Artificial Intelligence (AI)
over the last 30 years. Certain aspects of search have been used extensively in
AI and compose an important part of any search algorithm. Taking the field
of CSP as an example for the rest of AI, one can describe these essential parts
of searches as they appear in CSP. One important component is a set of meth-
ods for pruning the search space. The main examples are BackJumping and
Lookahead methods [51]. These methods are based on the concept of visiting
nodes on the search tree [31]. Other methods are based on heuristic ordering
of the search, which in CSP is the ordering of variables and of values [13].

This book presents research on distributed search that explores the above
aspects of search in AI in general and in CSP and COP in particular. The
main goal of many of the distributed search algorithms is to exploit the
distributed counterparts to known search strategies. It presents all complete
search algorithms by looking at their strategy of concurrency and its conse-
quences over the different aspects of distributed search. It points to aspects
that can be enhanced by certain strategies such as concurrent processing of se-
quential assignment algorithms, by all agents (cf. Chapter 6 and Chapter 16).
The bottom line of research of the last six years is that all aspects of cen-
tralized search can be designed into distributed search and all of them work
well, though sometimes in surprising new forms of heuristics and concurrency.
This is for example the case for ordering heuristics, where they turn out to
be as important for distributed search as they are for standard search. How-
ever, asynchronous heuristics (Chapter 9) behave differently than synchronous
heuristics (Chapter 8.1). They also need totally different distributed methods.

4 Distributed Search 29

A major point of the present exposition of Distributed Constraints Search
and Optimization is the emphasise on the inherent concurrency of all algo-
rithms and computations. Concurrency of computations introduces many ad-
ditional aspects to the investigation of search algorithms and heuristics. The
intricate topic of measuring the performance of distributed search algorithms
is introduced in depth in Chapter 10. Based on measures of distributed per-
formance, one can start to investigate the impact of communication on the be-
havior of DisCSP search algorithms. A preliminary study includes the design
of a model for message delays, within a concurrent simulator for distributed
constraints search algorithms. The overall approach and design is described
in Chapter 13.

Similarly to distributed constraint satisfaction problems, constraints op-
timization problems also have a distributed counterpart. A COP has values
attached to every pair of assignments of constrained variables (in a binary
COP). A distributed COP is composed of a set of agents that own non-
intersecting parts of the variables of the COP and together own the whole
COP. Constraints among variables that belong to different agents are val-
ued each pair of value assignments has a value (or cost) associated with it.
A partial assignment of values to variables owned by a set of agents has a
cummulative cost that is the sum of all assigned constraints. A solution to the
DisCOP is a complete assignment of all variables, by all agents, that has a
minimal global cost. Clearly, DisCSPs are a special case of DisCOPs where
all constraints are either 0 or 1. Many researchers believe that the natural
formulation of real-world problems is by a DisCOP. Take for example the
Meeting Scheduling Problem (MSP). A set of agents have meetings in which
various subgroups of the agents need to participate. Agents need to partici-
pate in several meetings each and need to have enough time to travel among
the meetings they are attending (arrival constraints).

Initially, this problem was formulated in the literature as a DisCSP [59,
60]. The problem is for the agents to search cooperatively for a schedule of
all meetings that satisfies all arrival constraints [59]. Another view of this
real-world problem is to take into account the fact that not all meetings can
be scheduled in a conflict-free way (i.e., a solution to the DisCSP does not
exist). Moreover, different meetings usually have a different utility for the
participants. So, a realistic alternative to the above is to formulate the MSP
as an optimization problem that minimizes the costs/penalties of all partici-
pating agents [38]. This way, the problem becomes one of finding the optimal
assignment of time slots to meetings, such that the global sum of all agents’
penalties (costs) is a minimum.

In the following sections distributed search algorithms for DisCSPs will
be introduced. The aim is to try and provide an intuitive understanding to
distributed search, before it is presented in full detail in Chapter 5, Chapter 6
and Chapter 7. An introduction to distributed search for an optimal solution
of a DisCOP, as well as to DisCOP algorithms, is left to Chapter 14.

30 4 Distributed Search

4.1 Distributed search algorithms on DisCSPs

A DisCSP can be thought of as a CSP in which the variables are divided
among a set of agents A1, A2, ..., An. Each agent knows only the constraints
of its local variables. It is often assumed that each agent holds exactly one
variable because multiple-variable agents can be represented by single-variable
agents in two general ways. One way is to define a composite assignment state
for multiple-variable agents. Each such state is composed of assignments to
all of the agent’s variables. This will make agents have a large number of
values, all combined assignments of an agent’s variables. However, it clearly
generates a single variable representation. The other form of generalizing a
multiple-variable agent is to define “virtual agents”, each holding one of the
variables of the agent. Thus, each agent in the distributed problem is a single-
variable agent. If the original problem had n multiple-variable agents, each
holding m variables, then the new version of the problem has n × m “vir-
tual agents” each holding a single variable. This representation enables any
ordering of the “virtual agents” and is a little more general than the composite-
variable representation. The bottom line of the above methods for representing
multiple-variable agents by single-variable agents is that it is enough to deal
with the simpler kind of agents. Those that hold only a single variable. This
has been the practice of all researchers in the field (cf. [9, 61]).

Agents communicate by messages, trying to find a solution to the DisCSP.
The common assumptions of DisCSP algorithmic research are the following:

• Messages arrive at their destination in a finite time
• Messages arrive in the order in which they were sent
• A total ordering of the agents and variables is known to all agents
• The constraints are at most binary

These assumptions are commonly used for DisCSP and DisCOP algo-
rithms [47, 61]. We will assume that each agent owns a single variable and
thus use the term “agent” and “variable” interchangeably.

The simplest distributed search algorithm for a distributed constraints
satisfaction problem can be described as follows. Imagine a special type of
message that we will term a Current Partial Assignment (CPA). The CPA
starts empty at the beginning of the run of the algorithm. There is only a
single copy of the CPA (e.g., it is a token) and it passes all agents in or-
der to accumulate a complete assignment to all variables of all agents. Each
agent that holds the CPA adds to it assignments to its variables. Added as-
signments must be compatible with all former assignments. If no compatible
assignments can be found, the agent holding the CPA returns it to former
agents, requesting them to revise their assignments on the CPA. This is an
operation of backtracking. It is easy to see that the algorithm that has been
described is a standard backtracking algorithm that is performed by all agents
in a distributed manner. It is also clear that all assignments are performed

4.1 Distributed search algorithms on DisCSPs 31

sequentially because the CPA is held by a single agent at a time. Tradition-
ally, this algorithm has been termed Synchronous BackTracking (SBT) by
Yokoo et. al [63, 64]. One can try to improve the performance of SBT by
using standard techniques from centralized CSP search, such as backjump-
ing. It is interesting to note that this idea appeared quite late in DisCSP
research and has indeed improved the performance of sequential assignments
distributed search algorithms (cf. [11, 71]). However, in order to understand
the improvement in performance, one needs to learn first about concurrent
performance measures (Chapter 10) and than investigate the behavior of a
variety of algorithm types in a concurrent environment (Chapter 11).

One method for achieving concurrency in a single backtrack search on a
distributed CSP is to try and avoid the waiting time of agents, for the arrival
of a single CPA. In order to avoid this waiting time, agents may compute as-
signments to their variables asynchronously. In asynchronous backtracking al-
gorithms, agents assign their variables without waiting to receive information
about all relevant assignments of other agents [53, 64]. To ensure the correct-
ness and completeness of asynchronous backtracking, all agents share a static
order of variables and the algorithm keeps data structures for Nogoods that
are discovered during search (cf. [8, 9]). Asynchronous Backtracking (ABT)
is undoubtedly the flagship of distributed search algorithms for DisCSPs. In
the next chapter the ABT algorithm will be described in great detail, in its
improved version of Nogood storage [9]. In Chapter 9 advanced versions of
ABT that enable dynamic ordering of agents during search are described. Not
surprisingly, these versions of asynchronous backtracking have a much better
performance than statically ordered ABT.

The next three chapters present the state of the art of complete distributed
search algorithms for DisCSPs. The first and most important algorithm is
Asynchronous Bactracking (ABT). The main design principle of ABT is to
exploit the option of performing multiple assignments concurrently [64]. Its
great virtue stems precisely from that feature - performing multiple assign-
ments concurrently (by multiple agents) and still maintaining a correct asyn-
chronous backtracking procedure over the complete search space.

A very successful family of classical search algorithms, on centralized CSPs,
uses different versions of lookahead [26]. These algorithms span a wide range
of lookahead methods. From forward-checking (FC) [51] to maintenance of
deeper forms of lookahead. A major focus has been on the maintenance of
arc-consistency (MAC) [7, 29]. In accordance with the general approach of
the present book, one can try and design a method of adapting lookahead
to benefit distributed search. This idea leads to the Asynchronous Forward-
Checking (AFC) algorithm that will be introduced in Chapter 6. In AFC a
single search process induces a distributed and asynchronous forward-checking
procedure that is performed by all agents. This generates a different kind of
concurrency and turns out to be very efficient (see Chapter 6).

An important component of centralized search, both on CSPs and in other
fields, has to do with heuristic selection of steps. In CSP this takes the form

32 4 Distributed Search

of ordering the variables for assignment and ordering values within domains
of variables [14]. Following our approach, one can try and order agents in
DisCSP search. When the DisCSP search algorithm assigns variables sequen-
tially, the ordering of agents can be easily achieved and performance is indeed
greatly improved [11, 44]. When the algorithm uses asynchronous assignments,
as in ABT, ordering dynamically is much more difficult and a correct and ele-
gant distributed algorithm was only published quite recently [71, 74]. The in-
teresting part about ordering heuristics is that they improve dramatically the
performance of most search algorithms, both centralized and distributed. As
a result, some simple beliefs about concurrency of search have been shattered
when ordering heuristics were used. For example, synchronous backtracking
(SBT) was believed to be much slower than asynchronous backtracking (ABT)
(cf. [61, 63]). Brito and Meseguer have shown that this is not true in the pres-
ence of heuristics [11].

A completely different approach to concurrency of distributed search is to
run multiple search processes that scan the search space concurrently. This can
in principle be done by splitting the search space during search and letting the
agents participate in all search processes. The resulting algorithm is termed
Concurrent Backtraking (ConcBT) [69]. The splitting of the search space can
be done dynamically, to balance the load of computation among all agents.
When search processes cooperate by backjumping across different processes,
the algorithm performs dynamic backtracking (e.g., ConcDB) and is the best
performing DisCSP algorithm to date [74]. It is described in Chapter 7.

In analogy to centralized search, algorithms can be designed so that they
do not guarantee completeness. In other words, when the algorithm fails to
find a solution it does not guarantee that a solution does not exist. The reason
for designing such algorithms is that they can be fast on large and hard
problems [63, 66]. The common approach to incomplete search is to design
search steps that perform local computaions. This fits very well the nature
of distributed computation. Agents exchange messages with their neighbors,
achieving agreement on their assignment in a local neighborhood, such that
some objective function is minimized. For a DisCSP, the objective function
can be the number of constraints violations (e.g., conflicts). In order to achieve
locally consistent assignments, in a stable distributed process, it is necessary
to synchronize each step of the algorithm across all neighborhoods in the
problem. This makes distributed stochastic search algorithms behave similarly
to centralized local search algorithms [61] and puts them outside the scope of
this book.

The next section presents an intuitive description of asynchronous back-
tracking. This description serves two goals. It introduces the classically most
important search algorithm for DisCSPs in an intuitive way, describing its
run on a simple problem. In addition, it gives the reader a first feeling of the
step-by-step run of a distributed search algorithm. A detailed description of
ABT, with its pseudo-code and a correctness proof will be given in Chapter 5.

4.2 Introducing Asynchronous Backtracking 33

4.2 Introducing Asynchronous Backtracking

Asynchronous backtracking (ABT) uses a complete order among all agents.
Agents receive messages informing them about assignments of agents that are
ahead of them in the total order (i.e. ok? messages). After performing an
assignment, each agent sends ok? messages to agents that are ordered after
it [9, 61, 64]. In ABT, agents always have their variables assigned. Initially,
variables are assigned without waiting for messages informing about assign-
ments of other (constraining) agents. When messages informing of assignments
of other agents that conflict with the current assignment of the receiving agent
arrive, the receiving agent performs one of two actions. Either it finds an alter-
native assignment that is consistent with the received message or it sends back
a Nogood message. The Nogood message informs the receiving agent that its
assignment has to be changed. Having sent back this Nogood (backtracking)
message, the agent than assumes that the culprit assignment will be changed
and proceeds to assign its variables accordingly. This is the way in which all
agents running ABT keep being assigned at all times (cf. [9, 61]).

Fig. 4.1. First cycle of ABT for 4-queens

In order to gain some intuitive understanding of ABT, consider its run on
a simple problem. We will describe here the first two steps or cycles of ABT
on the problem. This will give the reader some flavor of the behavior of ABT
(or any other distributed and asynchronous search algorithm). In Chapter 5

34 4 Distributed Search

Fig. 4.2. Second cycle of ABT for 4-queens

the example will be run to its end and references to the code of ABT will
make it easier to follow.

Figures 4.1, 4.2 describe the first two cycles of running ABT. Dividing the
asynchtonous run of ABT is quite artificial. This will become clearer in our
description of concurrent run-time measures in Chapter 10. The two states in
figures 4.1, 4.2 describe the first two cycles of ABT, solving the 4-queens prob-
lem. Each cycle of computation includes the receiving of messages, computa-
tions triggered by the received messages, and the sending of messages [61, 63].
The four agents A1, A2, A3, A4 are ordered from top to bottom.

In the first cycle all agents select a value for their variable (i.e., position
their queen). For no better reason we assume that all of them position their
queens at the first square of their row. Agents 1, 2, 3 each send ok? mes-
sages to the agents ordered after it. Agent A1 sends three messages, to all
agents ordered after it. Agent A2 sends two messages and agent A3 sends a
single message. Agent A4 does not have any agent after it, so it sends no
messages informing of its position. All agents are active in this first cycle of
the algorithm’s run.

In the second cycle agents A1, A2, A3 recieve the ok? messages sent to
them and proceed to assign consistent values to their variables. Agent A3

assigns the value 3 that is consistent with the assignments of A1 and A2

that it received. Agent A4 has no consistent value with the assignments of
A1, A2, A3. It sends a Nogood containing these three assignments to A3 and
removes the assignment of A3 from its Agent_V iew. Then, it assigns the

4.2 Introducing Asynchronous Backtracking 35

value 2 that is consistent with the assignments that it recieved from A1, A2

(having erased the assignment of A3, assuming it will be replaced because of
the Nogood message). The active agents in this cycle are A2, A3, A4. Agent
A2 acts according to its information about A1’s position and moves to square
3, sending two ok? messages to inform its successors about its value. As can
be seen in Figure 4.2, Agent A3 has moved to square 4, after receiving the
ok? messages of agents A1 and A2. Note that agent A3 thinks of the positions
of these two agents as being in square 1 of their respective rows. This is a
manifestation of concurrency which causes each agent to act at all times in
a form that is based only on its Agent_View. The Agent_V iew of agent A3

includes the ok? messages it received. We will leave for now the run of ABT on
the 4-queens example and will return to its complete description in Chapter 5.

5

Asynchronous Backtracking (ABT)

The asynchronous backtracking algorithm (ABT) first presented by Yokoo
[18] was constructed to remove the drawbacks of synchronous backtracking
(SBT) by allowing agents to perform assignments asynchronously. In all the
presentations of ABT, the algorithm is presented for DisCSPs in which each
agent holds exactly one variable. This avoids the problem of reconciling the
total order of the agents, which is assumed by ABT, with the order of the
variables. When agents hold multiple variables, these are two distinct orders
that the algorithm has to address. Each agent assigns its variable and com-
municates the assignment it made to the relevant agents.

The ABT algorithm in its standard form assumes that a total order of
priorities is defined among agents. In Chapter 9 a new and innovative version
of the ABT algorithm will be presented, in which agents can change their
order dynamically during search [74]. However, in order to both make the
understanding of ABT simpler and follow its history, it will be presented here
in the form in which it was used for most of the last decade [9, 63]. Each
binary constraint is known to both of the constrained agents and is checked
in the algorithm by the agent with the lower priority among the two. A link
in the constraint network is directed from the agent with the higher priority
to the agent with the lower priority among the two constrained agents.

Agents instantiate their variables concurrently and send their assigned
values to the agents that are connected to them by outgoing links. All agents
wait for and respond to messages. After each update of its assignment, an
agent sends through all outgoing links its new assignment. An agent which
receives an assignment (from the higher-priority agent of the link) tries to
find an assignment for its variable which does not violate a constraint with
the assignment it received.

ok? messages are messages carrying an assignment of an agent. When an
agent Ai receives an ok? message from agent Aj , it places the received assign-
ment in a data structure called Agent_V iew, which holds the last assignment
Ai received from higher-priority neighbors such as Aj . Next, Ai checks if its
current assignment is still consistent with its Agent_V iew. If it is consistent,

38 5 Asynchronous Backtracking (ABT)

Ai does nothing. If not, then Ai searches its domain for a new consistent
value. If it finds one, it assigns its variable and sends ok? messages to all
lower-priority agents linked to it. Otherwise, Ai backtracks.

The backtrack operation is executed by sending a Nogood message that
contains an inconsistent partial assignment. Nogoods are sent to the agent
with the lowest priority among the agents whose assignments are included
in the inconsistent tuple in the Nogood. Agent Ai that sends a Nogood
message to agent Aj assumes that Aj will change its assignment. Therefore,
Ai removes from its Agent_V iew the assignment of Aj and makes an attempt
to find an assignment for its variable that is consistent with the updated
Agent_V iew.

The issue of how to resolve the inconsistent partial assignment (Nogood)
which will be sent in the backtrack message evolved through the different
versions of ABT. A shorter Nogood would mean backjumping further up
the search tree, but finding such a short Nogood can be wasteful in com-
putational time. In the early versions of ABT ([18, 64]), Yokoo proposes to
send the full Agent_V iew as a Nogood. The full Agent_V iew is in many
cases not a minimal Nogood. In other words, it might contain assignments
that, if removed, the remaining partial assignment still eliminates all values
in the agent’s domain. The reason that sending the whole Agent_V iew back
is correct (but unsatisfactory) can be explained by the following example.

Consider an agent A6 which holds an inconsistent AgentV iew with the
assignments of agents A1, A2, A3, A4, and A5. If we assume that A6 is only
constrained by the current assignments of A1 and A3, sending a Nogood
message to A5 which contains all the assignments in the Agent_V iew seems
to be a waste. After sending the Nogood to A5, A6 will remove its assignment
from the Agent_V iew and make another attempt to assign its variable which
will be followed by an additional Nogood sent to A4 and the removal of
A4’s assignment from the Agent_V iew. These attempts will continue until
a minimal subset is sent as a Nogood. In this example, it is the Nogood
sent to A3. The assignment with the lower priority in the minimal inconsistent
subset is removed from the Agent_V iew and a consistent assignment can now
be found. In this example the computation ended by sending a Nogood to
the culprit agent, which would have been the outcome that would have been
achieved if the agent would have computed a minimal subset.

Let us turn now to the code of ABT in its simplest form. Algorithm 5.1
presents Yokoo’s code that assumes sending complete Agent_V iews as No-
goods. It can be rougfly divided into two parts - moving forward and mov-
ing back. Note that due to ABT’s asynchronous nature, the moves forward
or backward are performed at the same time. There is no synchronization
among actions taken by agents. Assignments and revoking of assignments are
performed concurrently. When an assignment is performed by an agent, it
sends an ok? message and upon receiving it the receiving agent performs
lines 1-2 of the code in Algorithm 5.1. The function Check_Agent_V iew

5 Asynchronous Backtracking (ABT) 39

Algorithm 5.1: ABT algorithm (Complete Agent_V iews as Nogoods)
• when received (ok?, (xj , dj)) do

1. add (xj , dj) to Agent_V iew;
2. check_agent_view;end_do;

• when received (Nogood, xj , nogood) do
1. add Nogood to Nogood list;
2. when Nogood contains an agent xk that is not its neighbor do
3. request xk to add xi as a neighbor,
4. and add (xk, dk) to Agent_V iew; end_do;
5. old_value ← current_value; check_agent_view;
6. when old_value = current_value do
7. send (ok?, (xi, current_value)) to xj ; end_ do; end_do;

procedure check_agent_view
1. when Agent_V iew and current_value are not consistent do
2. if no value in Di is consistent with Agent_V iew
3. then backtrack;
4. else select d ∈ Di where Agent_V iew and d are consistent;
5. current_value ← d;
6. send (ok?,(xi, d)) to low_priority_neighbors; end_if; end_do;

procedure backtrack
1. nogood← inconsistent_subset;
2. when nogood is an empty set do
3. broadcast to other agents that there is no solution;
4. terminate this algorithm; end_do;
5. select (xj , dj) where xi has the lowest priority in Nogood;
6. send (Nogood, xi, nogood) to xj ;
7. remove (xj , dj) from Agent_V iew; end_do;
8. check_agent_view

which is called attempts to assign a value that is consistent with the agent’s
Agent_V iew. If it fails, it calls backtrack.

Moving backward (e.g., replacing assignments) can be trigerred by receiv-
ing a Nogood. An agent Ai that receives a Nogood adds it to its list of
constraints. Since the Nogood can include assignments of some agent Aj ,
which Ai was not previously constrained with, Ai after adding Aj ’s assign-
ment to its Agent_V iew, sends a message to Aj asking it to add Ai to its list
of outgoing links (line 3 of the relevant function in Algorithm 5.1) [61, 63]. Aj

after adding the link, will send an ok? message to Ai each time it reassigns
its variable. After storing the Nogood, Ai checks if its assignment is still
consistent. If it is, a message is sent to the agent the Nogood was received

40 5 Asynchronous Backtracking (ABT)

from. This re-sending of the assignment is crucial since, as mentioned above,
the agent sending a Nogood assumes the receiver of the Nogood, replaces
its assignment. Therefore it needs to know that the assignment stayed. If the
old assignment that was forbidden by the Nogood is inconsistent, Ai tries to
find a new assignment similarly to the case when an ok? message is received.

The ABT algorithm ends successfully when the agents are all idle (i.e.,
their assignment is consistent with their Agent_V iew) and no message that
will change any agent’s Agent_V iew (e.g., an ok? message) or add to the
constraints of agents (e.g., a Nogood message) is traveling around in the
system between agents. In such a case the assignments the agents hold are
the solution to the DisCSP. The algorithm fails if some agent creates an
empty Nogood.

In Algorithm 5.1 every Nogood is stored by the receiving agent. Since
the number of inconsistent subsets can be exponential, constraints lists with
exponential size will be created, and a search through such lists requires ex-
ponential computation time in the worst case. In [63], Yokoo proposes that
agents keep only Nogoods consistent with their Agent_V iew, and claims
that preserving this property reduces the number of Nogoods to the size
of the variables domain. However, the maximal number of minimal Nogoods
which are consistent with the Agent_V iew (i.e., Nogoods which do not in-
clude other Nogoods), is the number of subsets of the Agent_V iew which
do not contain one another. This number is exponential in the size of the
Agent_V iew. In order to hold a number of Nogoods not larger than the
size of the domain a Nogood must be stored only if it is consistent with the
agent’s Agent_V iew and with its current assignment [8]. Since storing such
a Nogood causes a change of the current assignment, only one Nogood can
be stored for each value removed from the domain. Consequently, the num-
ber of Nogoods stored at any single agent is not larger than the size of the
domain. This approach to asynchronous backtracking is the best version of
ABT, which will be presented in detail in Section 5.2. First, we will follow the
run of ABT on the 4-queens problem to its end.

5.1 A Complete 4-Queens Example

Continuing the example of Chapter 4, we will commence from the third cycle,
that follows immediately the state desribed in Figure 4.2. The third cycle
is desribed in Figure 5.1. In the third cycle only agent A3 is active. After
receiving the assignment of agent A2, it sends back a Nogood message to
agent A2. It then erases the assignment of agent A2 from its Agent_V iew
and validates that its current assignment (the value 4) is consistent with the
assignment of agent A1. Agents A1 and A2 continue to be idle, having received
no messages that were sent in cycle 2. The same is true for agent A4. Agent
A3 also receives the Nogood sent by A4 in cycle 2, but ignores it since it

5.1 A Complete 4-Queens Example 41

Fig. 5.1. Cycle 3 of ABT for 4-Q Fig. 5.2. Cycles 4-5 of ABT 4-Q

includes an invalid assignment of A2 (i.e., < 2, 1 > and not the currently
correct < 2, 4 >).

Cycles 4 and 5 are depicted in Figure 5.2, so that the positions of the four
queens are at their state after both cycles. In cycle 4 A2 moves to square 4
because of the Nogood message it received. Its former value was ruled out
and the new value is the next valid one. It informs its successors A3 and A4

of its new position/value by sending two ok? messages. In cycle 5 agent A3

receives agent A2’s new position and selects the only value that is compatible
with the positions of its two predecessors, square 2. It sends a message to its
successor informing it about this new value. Agent A4 is now left with no
valid value to assign and sends a Nogood message to A3 that includes all its
conflicts. The Nogood message appears at the bottom of Figure 5.2. Note
that the Nogood message is no longer valid. Agent A4, however, assumes
that A3 will change its position and moves to its only valid position (with
A3’s anticipated move) - square 3.

Fig. 5.3. Cycle 6 of ABT for 4-Q Fig. 5.4. Cycles 7-8 of ABT 4-Q

42 5 Asynchronous Backtracking (ABT)

Consider now cycle 6. Agent A4 receives the new assignment of agent A3

and sends it a Nogood message. Having erased the assignment of A3 after
sending the Nogood message, it then decides to stay at its current assignment
(the value 3), since it is compatible with agents A1 and A2. Agent A3 is idle
in cycle 6, since it receives no messages from either agent A1 or A2 (who are
idle too). So, A4 is the only active agent at cycle 6 (see Figure 5.3).

Cycles 7 and 8 involve a series of Nogood sending. Both are depicted
in Figure 5.4. First agent A3, after receiving the Nogood message from A4,
finds that it has no valid values left and sends a Nogood to A2. Next, in cycle
8, agent A2 also discovers that its domain of values is exhausted and sends a
Nogood message to its successor A1. Both of the sending agents erase the
value of their successors (to whom the Nogood message was sent) from their
Agent_V iews and therefore remain in their positions which are now conflict
free.

Fig. 5.5. Cycle 9 of ABT for 4-Q Fig. 5.6. Cycle 10 (last) of ABT 4-Q

Cycle 9 involves only agent A1, which receives the Nogood message from
A2 and moves to its next value - square 2. Next, it sends ok? messages to its
three successors. The last cycle to establish the solution is cycle 10. Agent A3,
upon receiving the ok? message of A1 moves to a consistent value - square
1 of its row. Agents A2 and A4 check their Agent_V iews after receiving
the same ok? messages from agent A1 and find that their current values are
consistent with the new position of A1. Agent A3 sends an ok? message to
its successor A4, informing of its move, but A4 finds no reason to move. It
is consistent with all value assignments of all of its predecessors. After cycle
10 all agents remain idle, having no constraint violations with assignments on
their Agent_V iews [63]. This is a final state of the ABT algorithm when it
finds a solution.

The pseudo-code of Algorithm 5.1 is quite difficult to prove correct and its
implementation is actually a very slow version of ABT, due to the need to save
all Nogoods in order to maintain correctness. In the following section a more

5.2 The ABT Algorithm - Polynomial Storage 43

modern version of the ABT algorithm will be presented, following Bessiere
et al. [9]. Based on its clearly defined parts, such as keeping a polynomial
number of Nogoods, its correctness is proven formally [9].

5.2 The ABT Algorithm - Polynomial Storage

This section follows closely the presentation of [9]. Identical names will be
used for all data structures and all procedures. In fact, the pseudo-code is
copied by permission from [9] and is presented in Algorithm 5.2. As in the
classical version of ABT (Algorithm 5.1), a total order of priorities among
agents is assumed. Agents hold a data structure called myAgentV iew which
contains the most recent assignments received from agents with higher prior-
ity. The algorithm starts by each agent assigning its variable, and sending the
assignment to neighboring agents with lower priority in procedure CheckA-
gentView() in Algorithm 5.2). Algorithm 5.2 uses two data structures that
hold, for each agent, two lists. Γ+(Self) holds all agents constrained by the
current agent (Self) that are after it in the global order. Γ−(Self) holds all
agents constraining the current agent that are before it in the global order.
Self is used to denote the current agent that is running the algorithm [9].

When an agent receives a message containing an assignment (an ok? mes-
sage [61]), it updates its myAgentV iew with the received assignment by call-
ing procedure ProcessInfo(). It calls procedure CheckAgentView(), which
checks whether its assignment is still consistent or it needs to be replaced (first
procedure in Algorithm 5.2). If no consistent value can be found, the Back-
track() procedure is called. The procedure UpdateAgentView() ensures
the polynomial space in memory for storing Nogoods by erasing all No-
goods that are not consistent with the updated myAgentView. This is the
most important difference of Algorithm 5.2 from the original Yokoo version
(cf. Algorithm 5.1 [63]).

An elegant way of maintaining such a limited myNogoodStore is by keep-
ing Nogoods as explanations for removed values from the agent’s domain.
Whenever a value is removed from a domain, the reason can be either a con-
flict with some assigned higher priority agent, or a Nogood received from a
lower-priority agent. The former reason reflects a known constraint between
the two agents. In such a case the Nogood (explanation) is of length one.
The second potential reason for eliminating a value is the receiving of a (valid)
Nogood. This can create an explanation that is longer than a single term
(e.g., more than a single assignment on the LHS of the Nogood). All of this
mechanism was introduced by Ginsberg for the Dynamic Backtracking (DBT)
algorithm in [23]. In fact, the initial version of the polynomial storage version
of ABT was proposed in 2001 by Bessiere et. al under the title Distributed
Dynamic Backtracking (DisDB) [8].

When the Backtrack() procedure is called, the Nogood to be sent back
is constructed by the procedure solve(myNogoodStore), which resolves all

44 5 Asynchronous Backtracking (ABT)

Algorithm 5.2: The ABT algorithm with polynomial space (from [9])
procedure ABT()

myV alue← empty; end ← false; compute Γ+, Γ−;
CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)

ok? : ProcessInfo(msg);
ngd : ResolveConflict(msg);
adl : SetLink(msg);
stp : end← true;

procedure CheckAgentView(msg)
if ¬consistent(myV alue, myAgentV iew) then

myV alue← ChooseValue();
if (myV alue) then for each child ∈ Γ+(self) do sendMsg:ok?(child, myV alue);
else Backtrack();

procedure ProcessInfo(msg)
UpdateAgentView(msg.Assig);
CheckAgentView();

procedure ResolveConflict(msg)
if Coherent(msg.Nogood, Γ−(self) ∪ {self}) then
CheckAddLink(msg);
add(msg.Nogood, myNogoodStore); myV alue← empty;
CheckAgentView();

else if Coherent(msg.Nogood, self) then SendMsg:ok?(msg.sender, myV alue);
procedure Backtrack()

newNogood← solve(myNogoodStore);
if (newNogood = empty) then

end← true; sendMsg:stp(system);
else
sendMsg:ngd(newNogood);
UpdateAgentView(rhs(newNogood)← unknown);
CheckAgentView();

function ChooseValue()
for each v ∈ D(self) not eliminated by myNogoodStore do

if consistent(v, myAgentV iew[Γ−(self)]) then return (v);
else add(xj = valj ⇒ self 6= v, myNogoodStore); /*v is inconsistent with xj ’s value */

return (empty);
procedure UpdateAgentView(newAssig)
add(newAssig, myAgentV iew);
for each ng ∈ myNogoodStore do

if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);
function Coherent(nogood, agents)

for each var ∈ nogood ∪ agents do
if nogood[var] 6= myAgentV iew[var] then return false;

return true;
procedure SetLink(msg)
add(msg.sender, Γ+(self));
sendMsg:ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
for each (var ∈ lhs(msg.Nogood))

if (var /∈ Γ−(self)) then
sendMsg:adl(var, self);
add(var, Γ−(self)); UpdateAgentView(var ← varV alue);

5.2 The ABT Algorithm - Polynomial Storage 45

Nogoods of the agent’s store and produces the resolvant. The explanation of
the value that was eiminated by this Nogood is erased (line 6 of procedure
Backtrack() in Algorithm 5.2) and the resolvant Nogood is sent to the
lowest-priority agent whose assignment is included in the Nogood [9]. After
the eliminating explanation (i.e., culprit) assignment is removed from myA-
gentView the agent makes another attempt to assign its variable by calling
the procedure UpdateAgentView() (procedure backtrack lines 5-9).

Agents that receive a Nogood check its relevance against the content
of their myAgentV iew by calling procedure ResolveConflict(). If the No-
good is relevant the agent stores it, and tries to find a consistent assignment.
If the agent receiving the Nogood keeps its assignment, it informs the No-
good sender by re-sending it an ok? message with its assignment. In order
to demonstrate the fine points of Algorithm 5.2 let us follow the detailed ex-
ample of resolving Nogoods step by step, from the original paper of Bessiere
et al. [8] that proposed this algorithm.

Fig. 5.7. An example DisCSP

Consider the example problem in Figure 5.7. The problem consists of four
variables X1, . . . , X4, each with its domain of values. Constraints are depicted
by lines connecting the constrained pairs of variables and all constraints are
constraints of inequality. Let us follow in detail the step by step run of the

46 5 Asynchronous Backtracking (ABT)

ABT algorithm in its improved form, keeping a polynomial number of No-
goods (Algorithm 5.2). The steps are quite arbitrary as the algorithm runs
asynchronously. The main emphasis is on the resolving of Nogoods and es-
pecially on discarding invalid Nogoods. The scheme of the run is depicted
in the form of a table in Figure 5.8, which is taken from [8]. Each row of
the table in Figure 5.8 describes a further step (or cycle) of the run of ABT
on the problem in Figure 5.7. Each column describes the state of one of the
agents during the steps of running the algorithm. A state consists of the
myAgentV iew of the agent, with assignments of all agents that are predeces-
sors, the myNogoodStore, and the current assignment of the agent. Agents
are ordered from left to right, in lexicographical order.

In the first step or round of the agents running the ABT algorithm, each
assigns its variable the first value in its domain. Each sends an Info() message
to its successor, informing them of its assignment. For all three first agents
there is a single successor - X4. This is depicted in the first row of the table in
Figure 5.8, where the Info() messages appear at the sending agent’s descrip-
tion. Note that the myAgentV iews of all agents, which appear as a vertical
column on the left of each cell of the table, include only the assignment of the
agent itself. This being the first step, no message has yet been accepted.

Continuing the description of the run as a step-by-step scenario, we move
to the second cycle, when messages are received and computations take
place. Agent X4 computes two Nogoods that rule out both of its val-
ues after receiving all Info() messages. These are (X1 = b ⇒ X4 6= b)
and (X2 = a ⇒ X4 6= a). Resolving the two Nogoods that emptied its
domain, X4 generates the Nogood (X1 = b ⇒ X2 6= a) and sends it
in a back() message to X2. Let us continue carefully now. Following the
sending of the back() message, X4 erases the assignment of X2 from its
myAgentV iew. However, its value a is now ruled out by the Nogood (expla-
nation) (X3 = a⇒ X4 6= a). An empty domain triggers again a resolution of
all Nogoods to generate another back() message, this time to X3, containing
the Nogood (X1 = b ⇒ X3 6= a). Now X4 is left with an assignable value
and it assigns the value a.

The third cycle of computations is shown in the third row of Figure 5.8.
Agent X2 resolves the Nogood it received, since it has no value left in its
domain. As a result it sends back to X1 a back() message containing the
Nogood (⇒ X1 6= b). Following that, X2 erases the assignment of X1 from
its myAgentV iew and assigns the value a (the only one in its domain). Next,
it sends an Info() to its only successor X4.

In the same third cycle agent X3 receives the Back() message and adds to
its myAgentV iew the assignment X1 = a. Then it changes its assignment to b
and sends an Info() message to X4. Finally, let us squeeze into the third cycle
of computation also the receiving of the Back() message by X1. In response
to this message X1 keeps it, erases the value b from its domain and assigns
the remaining value a. This assignment is sent in an Info() message to X4.

In the fourth step of the distributed computation agent X4 receives the
two Info() messages sent to it in the third cycle by agents X1 and X3. These

5.3 Correctness of ABT 47

Fig. 5.8. A detailed run of ABT on the example

rule out its two values (each by a different agent) and it resolves them into a
new Back() message that contains the Nogood (X1 = a⇒ X3 6= b) (fourth
row of Figure 5.8). Note that all agents keep their relevant Nogoods and the
relevant assignments of predecessor agents.

In the fifth step (one before last row of Figure 5.8) agent X3 receives
the Back() messages, changes the assignment of X1 in its myAgentV iew
to a, changes its own assignment to b, and sends an Info() message to X4.
This ends the computation. Agent X4 receives this message and updates its
myAgentV iew accordingly. It retains its assignment because there is no con-
flict with any of the three assignments of the other agents. The DisCSP
network remains idle and this is the final step of finding a solution.

5.3 Correctness of ABT

Let us start by noting that ABT in its form of Algorithm 5.2 uses polynomial
storage space for its Nogoods. This is immediately clear from the fact that
Nogoods are kept as explanations to erased values in the domains of agents
that received these Nogoods. For n agents and k values in the largest domain
the total storage space is bound by n × k. Note that a maximum of a single
Nogood is kept for each value and obsolete Nogoods are erased.

48 5 Asynchronous Backtracking (ABT)

The soundness of ABT is also immediate. A solution (in all versions of
ABT) is detected by an idle state of the system. In an idle state no agent
sends any message. This means that there are no constraint violations, since
any violation would entail a message [e.g., a Back() message].

The more difficult property of ABT in Algorithm 5.2 to prove, is its com-
pleteness and termination. This difficulty relates to its dropping of obsolete
Nogoods. We will therefore prove the completeness of ABT for the version
that keeps all Nogoods and then show that dropping of obsolete Nogoods,
in accordance with Algorithm 5.2, does not violate completeness. In this we
follow the proof of [8].

Assume that all Nogoods are kept. All Nogoods resulting from an Info()
message are redundant with the DisCSP itself. Additional Nogoods are gen-
erated by resolution and due to its correctness cannot generate the empty No-
good if a solution exists (i.e., completeness). Moreover, the extensive storage
of Nogoods prunes a monotonically increasing part of the search space. In
a finite time some state A will be reached in which every inconsistent assign-
ment is forbidden. If there is no solution to the DisCSP, an empty Nogood
will be generated and the algorithm will terminate.

If a solution exists one may prevent an agent from taking a consistent
value, by keeping an obsolete Nogood (because all are kept). To see why this
is impossible consider two cases for such an obsolete Nogood. Assume that
agent Xi stores the obsolete Nogood that is made obsolete by a change in
the state of agent Xj . If Xj ∈ Γ−, an Info() message is on its way and will
enable the needed assignment of Xi. Otherwise, agent Xi will be left with no
values (because its only value that participates in a solution is forbidden by
the obsolete Nogood) and will eventually send a Back() message and erase
the obsolete Nogood. In both cases completeness is ensured. �

We have shown that the ABT algorithm is sound, complete, and termi-
nates when it keeps all Nogoods. This is actually the original version pf ABT
that was proposed by Yokoo [64] and is presented in Algorithm 5.1. What we
need to show now is that these properties of ABT remain true in the pres-
ence of erasing obsolete Nogoods. It is important to remember that obsolete
Nogoods are erased when either an Info() or a Back() message is received,
in which some assignment of an agent that is of higher priority is no longer
valid.

The proof by induction starts with the first agent in the ordering of the
DisCSP (say, X1). Clearly, X1 receives no Info() messages and all Back()
messages it receives have an empty left side. As a result, agent X1 can never
make any of its Nogoods obsolete. But this means that X1 can never go into
an infinite loop - erasing a Nogood and later storing it.

Assume now that the first k− 1 agents in the ordering are not trapped in
an infinite loop because of discarding of obsolete Nogoods. Consider the next
agent in the ordering - Xk. If it goes into an infinite loop, that means that it
keeps sending Nogood messages to some of the first k − 1 agents and keeps

5.4 Improving Performance of ABT 49

discarding them infinitely. But, since the first k−1 agents do not loop infinitely,
this is impossible. Either they will stop sending messages and Xk will not be
in an infinite loop, or they will generate an empty Nogood which stops all
agents eventually. This completes the proof that ABT in its polynomial storage
version that discards all obsolete Nogoods (Algorithm 5.2) is complete and
terminated. Soundness was proven immediately for all versions of ABT. �

5.4 Improving Performance of ABT

The main potential problem for the performance of ABT arises directly from
its most important virtue - its asynchronicity. As a true asynchronous al-
gorithm it responds to every message it receives by the apropriate actions.
Imagine that for some reason in message delivery by the system agent Ai

receives ok? messages from two agents Aj and Ak that are both of higher
priority than Ai. Assume that the first message to arrive at Ai is from Aj ,
but that Ak ≺ Aj . This of course has nothing to do with the time these
messages were sent, since the system is asynchronous. After agent Ai deals
with updating, checking, and adjusting its Agent_V iew and consequently its
assignment with the information contained in the message from Aj , an ok?
messages arrives (asynchronously) from agent Ak. This message in fact caused
Aj to change its assignment and send to Ai another message that may be on
its way. Imagine that the combination of the assignments of Aj and Ak causes
Ai to send a Nogood message to Aj . Now to complete the example imagine
that the above two messages are first in the queue of Ai’s mailbox and after
them has already arrived a message from Aj , informing Ai that it has al-
ready changed its assignment, say, because it conflicts with Ak’s assignment.
Clearly, when Ai’s Nogood messages finally arrives at Aj it will not do any-
thing except for sending Ai an additional ok? message to make sure it adds
its assignment back to its Agent_V iew (having erased it for the Nogood
sending).

Yokoo noticed this problem early on and proposed to improve the perfor-
mance of ABT by having agents read all messages they receive before per-
forming computation [63]. A formal protocol for such an algorithm was not
published. The idea is not to reassign the variable until all the messages in the
agent’s mailbox are read and the status it keeps of all other agents’ assign-
ments (i.e., its Agent_V iew) is updated. This technique was actually found
to improve the performance of ABT on the harder instances of randomly
generated DisCSPs by a factor of 4 [68]. However, this property makes the
efficiency of ABT dependent on the contents of the agent’s mailbox in each
step, i.e., on potential message delays (see Chapter 12 and Chapter 13).

If messages do not arrive instantaneously, the inconsistency between the
Agent_V iew and the system’s state tends to grow. Furthermore, if messages
do not arrive at the same time, the agents are more likely to respond to a

50 5 Asynchronous Backtracking (ABT)

single message, which tends to deteriorate the algorithm’s performance. On
systems with random delay which simulate real-world systems, the improve-
ment that results from reading all incoming messages in each cycle is washed
out completely. This was a major experimental result of [4, 19], but did not
have a clear explanation there. The mechanism is more clearly understood
in [72, 73].

Fig. 5.9. Non-concurrent computation steps of ABT - reading complete mailboxes

The improvement to the performance of ABT by reading complete mail-
boxes, as presented in Figure 5.9, is quite impressive. The resulting version
of ABT, which reads complete mailboxes at each step and that keeps a poly-
nomial number of Nogoods, is the best version. It is used routinely in all
experimental studies that compare performance of DisCSP algorithms, in
particular in all empirical results throughout the present book. As will be
seen in Chapter 13, it slows down very strongly in the presence of delayed
messages.

According to Yokoo, ABT eliminates the main drawback of Synchronous
Backtrack (SBT) by allowing agents to assign their variables concurrently.
During all stages of the algorithm’s run, agents assign values to their variables,
consistent with the current view that the agent holds on other agents’ states.
This property of ABT enhances the degree of concurrency of the algorithm

5.4 Improving Performance of ABT 51

but raises a major drawback. The Agent_V iews may not be relevant. This
can happen for two reasons:

1. Assignments of other agents may have changed and the notifying message
has not been received yet.

2. The partial assignment held in the Agent_V iew may contain conflicting
assignments and therefore it is not a partial solution.

As a result of the above phenomena, during the run of the ABT algorithm
agents may waste computational effort, checking their assignments against
irrelevant assignments of other agents. This is in turn followed by sending
inconsistent assignments in messages that may create more inconsistent com-
putation at other agents. This state of affairs is in contrast to the main mo-
tivation for the ABT algorithm: the wish to benefit from concurrency by
having each agent maintain its own view of the current search state (its own
Agent_V iew) and perform its computation based on that state. A major
motivation for using an asynchronous algorithm is that no waiting or syn-
chronization is needed. Agents are free to progress in the search at their own
rate, hopefully maximizing parallelism while still assuring that the algorithm
is both complete and sound. The tradeoff, it seems, comes at the expense of
algorithmic difficulty.

Let us consider once again the main features of ABT. It performs a back-
tracking search process of all agents, asynchronously. This in turn means that
agents perform both computations and assignments concurrently, as part of
the same search process. The difficulty of concurrency of assignments in a
backtracking search process arises intuitively from the fact that agents need
to take into account the possibility that other agents see different search states.
For example, an agent can report that some combination of assignments is a
Nogood, and report this Nogood to another agent. The receiving agent, at
the time of receiving, may find that this combination of assignments does not
exist in its view of the search state. This agent is unable to know whether this
is because its agent view is not yet updated (but may be updated soon), or
that it is the sending agent’s view that is obsolete. This was the deep reason
for the keeping of all Nogoods by the original version of the algorithm [63].
The great advantage of the formulation of Algorithm 5.2 is that it determines
easily that such a Nogood does not need to be kept, while the correctness of
the algorithm is kept intact [8, 9]. Therefore, it turned out that it is impor-
tant to invest efforts in researching other forms of concurrency for DisCSP
search algorithms. Either concurrent computation and no concurrent assign-
ments by agents, as is done in the Asynchronous Forward-Checking algorithm
in Chapter 6. Or concurrent search processes, in the Concurrent Dynamic
Backtracking algorithm in Chapter 7.

6

Asynchronous Forward-Checking

Asynchronous Forward-Checking (AFC) is a family of distributed search algo-
rithms on DisCSPs that utilizes concurrency differently than ABT. To avoid
the problems that arise when agents process concurrent assignments by other
agents, it maintains a single and a synchronous set of assignments among
all agents at all times. Its concurrency of computation arises from processing
forward-checking (FC) asynchronously (as it name clearly shows) [44]. In the
AFC algorithm, the state of the search process is represented by a data struc-
ture called the Current Partial Assignment (CPA). The CPA starts empty
at some initializing agent that records its assignments on it and sends it to
the next agent. Each receiving agent adds its assignment to the CPA, if a
consistent assignment can be found. Otherwise, it backtracks by sending the
same CPA to a former agent to revise its assignment on the CPA.

Each agent that performs an assignment on the CPA sends forward a copy
of the updated CPA, requesting all agents to perform forward-checking. This
is the mechanism for concurrently computing forward-checking. Agents that
receive copies of assignments filter their domains and in case of a dead-end
send back a Not_OK message. The concurrency of the AFC algorithm is
achieved by the fact that forward-checking is performed concurrently by all
agents. The protocol of the AFC algorithm enables agents to process forward-
checking (FC) messages concurrently and yet block the assignment process at
the agent that violates consistency with future variables. On hard instances
of randomly generated DisCSPs with different message delays, AFC outper-
forms ABT by a large factor [44] (see Chapter 11).

An interesting improvement to AFC can be made. In addition to con-
currency of checking forward, a concurrency of backtracking was introduced
by [48]. When a backtrack is initiated by a Not_OK message, it is sent directly
to the culprit agent. This triggers an additional search process, starting at the
backtracking agent. An intuitive way to understand this improvement to AFC
is to say that it adds concurrent backtracking processes to its asynchronous
forward-checking. All the generated concurrent search processes, save one, are
unsolvable (i.e., contain a Nogood that generated the backtrack message).

54 6 Asynchronous Forward-Checking

Consequently, the improved AFC algorithm terminates all of these search
processes as soon as their unsolvability is validated (within a small number of
steps).

The AFC algorithm combines the advantage of assigning values consistent
with all former assignments and of propagating the assignments forward asyn-
chronously. Assignments in AFC are performed by one agent at a time. The
assigning agent keeps the partial assignment consistent. Each such assignment
is checked by multiple agents concurrently. Although forward-checking is per-
formed asynchronously, at most one backtrack operation is generated for a
failure in a future variable.

Agents assign their variables only when they hold the current partial as-
signment (CPA). The CPA is a unique message that is passed between agents,
and carries the partial assignment that agents attempt to extend into a com-
plete solution by assigning their variables on it. In that sense one can think
of the CPA as a unique token.

Forward-checking is performed as follows. Every agent that sends the CPA
forward sends copies of the CPA, in messages we term FC_CPA, to all agents
whose assignments are not yet on the CPA (except for the agent the CPA it-
self is sent to). Agents that receive FC_CPAs update their variables domains,
removing all values that conflict with assignments on the FC_CPA. Asyn-
chronous forward-checking enables agents an early detection of inconsistent
partial assignments and initiates backtracks as early as possible. An agent
that generates an empty domain as a result of a forward-checking operation,
initiates a backtrack procedure by sending Not_OK messages which carry
the inconsistent partial assignment which caused the empty domain.

A Not_OK message is sent to all agents with unassigned variables on
the (inconsistent) CPA. An agent that receives the CPA and is holding a
Not_OK message, sends the CPA back in a backtrack message. The unique-
ness of the CPA ensures that only a single backtrack is initialized, even for
multiple Not_OK messages. In other words, when multiple agents reject a
given assignment by sending Not_OK messages, only one agent that received
any of those messages will eventually backtrack. The first agent that will re-
ceive a CPA and is holding a relevant Not_OK message. The Not_OK
message becomes obsolete when the partial assignment it carries is no longer
a subset of the CPA. (Other options for initializing backtrack operations were
suggested by [48]; see Section 6.3.)

The AFC algorithm is run on each of the agents in the DisCSP and uses
the following objects and messages:

• CPA (current partial assignment): a message that carries the currently
valid (and consistent) partial assignment. A CPA is composed of triplets
of the form < A, X, V > where A is the agent that owns variable X and V
is the value that was assigned to X by A. Each CPA contains a counter
that is updated by each agent that assigns its variables on the CPA. This
counter is used as a time stamp by the agents in the AFC algorithm

6.1 AFC - Algorithm Description 55

and is termed the step-counter (SC). The partial assignment in a CPA is
maintained in the order the assignments were made by the agents.

• FC_CPA: a message that is an exact copy of a CPA. Every agent that
assigns its variables on a CPA, creates an exact copy in the form of an
FC_CPA (with the same SC) and sends it forward to all unassigned
agents.

• Not_OK: agents update their domains whenever they receive FC_CPA
messages. When an agent encounters an empty domain, during this pro-
cess, it sends a Not_OK message. The Not_OK message carries the
shortest inconsistent subset of assignments from the FC_CPA and in-
forms other agents that this partial assignment is inconsistent with the
sending agent’s domain.

• AgentV iew: each agent holds a list of assignments which are its updated
view of the current assignment state of all other agents. The AgentV iew
contains a consistency flag AgentV iew.consistent, that represents whether
the partial assignment it holds is consistent. The AgentV iew contains a
step-counter (SC) which holds the value of the highest SC received by the
agent.

• Backtrack: An inconsistent CPA (i.e., a Nogood) sent to the agent with
the most recent conflicting assignment.

6.1 AFC - Algorithm Description

The main function of the algorithm AFC is presented in Algorithm 6.1 and
performs two tasks. If it is run by the initializing agent (IA), it initiates
the search by generating a CPA (with SC = 0), and then calling function
assign_CPA (line 2-4). All agents performing the main function wait for
messages, and call the functions dealing with the relevant type of message
received. The two functions dealing with receiving the CPA and assigning
variables on it are also presented in Algorithm 6.1.

Function receive_CPA is called when the CPA is received either in a
forward move or in a backtrack message. After storing the CPA, the agent
checks its AgentV iew status. If it is not consistent and it is a subset of the
received CPA, this means that a backtrack of the CPA has to be performed.
If the inconsistent AgentV iew is not a subset of the received CPA, the CPA is
stored as the updated AgentV iew and it is marked consistent. This reflects the
fact that the received CPA has revised assignments that caused the original
inconsistency. The rest of the function calls assign_CPA, to extend the
current partial assignment. If the CPA is a backtrack, the last assignment is
removed first (lines 8, 9). Otherwise, the AgentV iew is updated to the received
CPA and its consistency with current domains is checked and updated. The
assignment of variables of the agent currently holding the CPA is performed
by the function assign_CPA.

56 6 Asynchronous Forward-Checking

Algorithm 6.1: AFC algorithm - receive and assign CPA
AFC:
1. done ← false
2. if(IA)
3. CPA ← generate_CPA
4. assign_CPA
5. while(not done)
6. msg ← receive_msg
7. switch msg.type
8. stop: done ← true
9. FC_CPA: forward_check
10. Not_OK: process_Not_OK
11. CPA: receive_CPA
12. backtrack_CPA: receive_CPA

receive_CPA:
1. CPA ← msg_CPA
2. if(not AgentView.consistent)
3. if(contains(CPA, AgentView))
4. backtrack
5. else
6. AgentView.consistent ← true
7. if(AgentView.consistent)
8. if(msg.type = backtrack_CPA)
9. remove_last_assignment
10. assign_CPA
11. else
12. if(update_AgentView(CPA))
13. assign_CPA
14. else
15. backtrack

assign_CPA:
1. CPA ← add_local_assignments
2. if(is_assigned(CPA))
3. if(is_full(CPA))
4. report_solution
5. stop
6. else
7. CPA.SC++
8. send(CPA,next)
9. send(FC_CPA,other_unassigned_agents)
10. else
11. AgentView ← shortest_inconsistent_partial_assignment
12. backtrack

6.1 AFC - Algorithm Description 57

Function assign_CPA tries to find an assignment for the agent’s local
variables which is consistent with local constraints and does not conflict with
previous assignments on the CPA. If the agent succeeds it sends forward the
CPA or reports a solution, when the CPA includes all agents assignments
(lines 2-5). If the agent fails to find a consistent assignment, it calls function
backtrack after updating its AgentV iew with the inconsistent partial assign-
ment, that was just discovered (lines 11-12). Whenever an agent sends forward
a CPA (line 8), it sends a copy of it in a FC_CPA message to every other
agent whose assignments are not yet on the CPA (line 9).

The rest of the AFC algorithm deals with backward-moving CPAs and
with propagation of the current assignment. It is presented in Algorithm 6.2.

Function backtrack is called when the agent is holding the CPA in one
of two cases. Either the agent cannot find a consistent assignment for its
variables, or its AgentV iew is inconsistent and is found to be relevant with
the received CPA. In case the agent is the IA the search ends unsuccessfully
(lines 1-3). Other agents performing a backtrack operation copy to the CPA
the shortest inconsistent partial assignment from their AgentV iew (line 6),
and send it back to the agent which is the owner of the last variable in that
partial assignment. The AgentV iew of the sending agent retains the Nogood
that was sent back.

The next two functions in algorithm Algorithm 6.2 implement the asyn-
chronous forward-checking mechanism. Two types of messages can be received
by an agent, FC_CPA and Not_OK (lines 9, 10 of the main function in Al-
gorithm 6.1).

Function forward_check is called when an agent receives a FC_CPA
message. Since an FC_CPA message is relevant only if the message is an
update of partial assignments received in previous messages, the SC value is
checked to test the message relevance (line 1). Older SCs represent partial
assignments that have already been checked within the partial assignment of
the current (larger) SC of the receiving agent. When the AgentV iew is in-
consistent, the agent checks whether its AgentV iew is still relevant. If not,
the AgentV iew becomes consistent (lines 2-4). In the case of a consistent
AgentV iew, the agent updates its AgentV iew and current-domains by call-
ing the function update_AgentView. If this causes an empty domain, the
agent sends Not_OK messages to all agents which are unassigned in the in-
consistent partial assignment found and stored in the AgentV iew (lines 6-7).

Function process_Not_OK checks the relevance of the received incon-
sistent partial assignment, with the AgentV iew. If the Not_OK message is
relevant, it replaces the AgentV iew by the content of the Not_OK message
(lines 2-3).

Function update_AgentView(partial_assignment) is called in the case
of a CPA moving forward is received or a relevant FC_CPA. It sets the
AgentV iew and current domains to be consistent with the received partial
assignment. In the case of an empty domain, update_AgentView returns

58 6 Asynchronous Forward-Checking

Algorithm 6.2: AFC algorithm - backtracking and forward-checking
backtrack:
1. if(IA)
2. send(stop, all_other_agents)
3. done ← true
4. else
5. AgentView.consistent ← false
5. backTo ← last(AgentView)
6. CPA ← AgentView
7. send(backtrack_CPA, backTo)

forward_check:
1. if(msg.SC > AgentView.SC)
2. if(not AgentView.consistent)
3. if(not contains(FC_CPA, AgentView))
4. AgentView.consistent ← true
5. if(AgentView.consistent)
6. if (not(update_AgentView(FC_CPA)))
7. send(Not_OK, unassigned_agents(AgentView))

process_Not_OK:
1. if(contains(AgentView, Not_OK))
2. AgentView ← Not_OK
3. AgentView.consistent ← false
4. else if(not-contains(Not_OK,AgentView))
5. if(msg.SC > AgentView.SC)
6. AgentView ← Not_OK
7. AgentView.consistent ← false

update_AgentView(partial_assignment):
1. adjust_AgentView(partial_assignment)
2. if(empty_domain)
3. AgentView ← shortest_inconsistent_partial_assignment
4. return false
5. return true

false and sets the AgentV iew to hold the shortest inconsistent partial assign-
ment.

Function adjust_AgentView(partial_assignment) changes the content
of the AgentV iew to that of the received partial assignment. It also updates
the current domains of the variables to be consistent with the AgentV iew′s
new content.

The protocol of the AFC algorithm is designed so that only one backtrack
operation is triggered by any number of Not_OK messages. This can be seen

6.2 Correctness of AFC 59

from the pseudo-code of the algorithm, in Algorithm 6.1 and Algorithm 6.2
as follows:

• If a single agent discovers an empty domain, all Not_OK messages carry
the same inconsistent partial assignment (Nogood) and each agent that
receives such a Not_OK message has a consistent AgentV iew. In this case
the CPA will finally reach an agent that holds an inconsistent AgentV iew,
which is a subset of the set of assignments on the CPA. This CPA, at that
step, will be sent back as a backtrack message.

• If two agents discover an empty domain as a result of receiving an identical
FC_CPA and create Not_OK messages with identical inconsistent par-
tial assignments. Other agents will receive two copies of the same Not_OK
message. The second Not_OK message will be ignored since the Nogood
it carries is the same as the one the receiving agent already holds. The rest
of the processing will be the same as in the single empty domain case above.

• The general case is when two different agents send Not_OK messages
that include two different inconsistent partial assignments. If one message
is included in the other (i.e., a shorter Nogood), then the order of their
arrival is irrelevant. If the shortest one arrives first, the long one is ignored.
If the longer one arrives first the shorter one will replace it. If the two
Not_OK messages include a different assignment to a common agent,
then the receiving agent uses the SC on the messages to determine the
more recent one and ignores the other.

At least one of the agents that must receive and process the CPA holds the
Nogood (the creator of the Nogood itself). This ensures that the backtrack
operation will take place.

6.2 Correctness of AFC

A central fact that can be established immediately is that agents send for-
ward only consistent partial assignments. This fact can be seen in lines 1, 2
and 8 of procedure assign_CPA. This implies that agents process, in pro-
cedures receive_CPA and assign_CPA, only consistent CPAs. Since the
processing of CPAs in these procedures is the only means for extending partial
assignments, the following lemma holds:

Lemma 6.2.1 AFC extends only consistent partial assignments. The partial
assignments are received via a CPA and are extended and sent forward by the
receiving agent.

The correctness of AFC includes soundness and completeness. The sound-
ness of AFC follows immediately from the above lemma. The only lines of the
algorithm that report a solution are lines 3, 4 of procedure assign_CPA. A
solution is reported when a CPA includes a complete and consistent assign-
ment.

60 6 Asynchronous Forward-Checking

In order to prove the completeness and termination of AFC, one needs
to make a few changes to function assign_CPA, in order to avoid stop-
ping after finding the first solution. Assume therefore that, instead of stop-
ping after the first solution is found (line 5 of assign_CPA), the agent
simply records the solution, removes its assignment and recalls function as-
sign_CPA. The second needed change is to make the procedure of assigning
values to variables concrete. This enables to prove the exhaustiveness of the
assignments produced by AFC and to show termination. Assume that the
function add_local_assignments, in line 1 of assign_CPA scans all val-
ues of a variable in some predefined order, until it finds a consistent assignment
for the agent’s variable. For the rest of the completeness proof it is assumed
with no loss of generality that each agent holds exactly one variable.

Backtrack steps of AFC remove a single value from the domain of the
agent that receives the backtrack message. This is easy to see in lines 8-10 of
function receive_CPA in Algorithm 6.1. The only way that a value removed
by a backtrack step from agent Ai can be reassigned is after the CPA is sent
further back to some agent Aj (j < i) and returns. Since there are a finite
number of values in all agents domains, the following lemma is established.

Lemma 6.2.2 AFC performs a finite number of backtrack steps.

The termination of AFC follows immediately. Any infinite loop of steps of
AFC must include an infinite number of backtrack steps and this contradicts
Lemma 6.2.2.

AFC can in principle avoid sending forward consistent partial assignments
through the mechanism of Not_OK messages. An agent that fails to find a
value that is consistent with a received FC_CPA message sends a Not_OK
message. This message may stop a recipient from trying to extend a valid
and consistent assignment on a CPA. However, every Not_OK message is
generated by a failure of the function update_AgentView (lines 6, 7 of
function forward_check in Algorithm 6.2). The failure corresponds to a
CPA that has no consistent value in the agent that generates the Not_OK
message. Thus, the rejected CPA (i.e. its partial assignment) cannot be part
of a solution of the DisCSP. This observation is stated by the next lemma.

Lemma 6.2.3 Consistent CPAs that are not sent forward for extension be-
cause of a Not_OK message, cannot be extended to a solution (i.e., they are
Nogoods).

If AFC can be shown to process every consistent partial assignment (for a
given order of agents/variables), this would establish the completeness of the
algorithm. Completeness follows from this fact in analogy to the completeness
proof for centralized backtracking in [31]. By Lemma 6.2.3, it is enough to
prove completeness for the case where there are no Not_OK messages.

Assume by contradiction that there is a solution S = (< A1, V1 >,<
A2, V2 >, . . . , < An, Vn >) that is not found by AFC. This means that some
partial assignment of S is not sent forward by some agent. Let the longest

6.3 Improved Backtrack Method for AFC 61

partial assignment of S that is not sent forward be S′ = (< A1, V1 >,<
A2, V2 >, . . . , < Ak, Vk >) where k < n. S′ is consistent, being a subset of S.
There is at least one such partial assignment (< A1, V1 >), performed by the
first agent, because of its exhaustive scan of values. But, by lines 2, 8, 9 of
function assign_CPA, agent Ak sends the partial assignment S′ to the next
agent because it is consistent. This contradicts the assumption of maximality
of S′. This completes the correctness proof of algorithm AFC, soundness,
termination, and completeness.

6.3 Improved Backtrack Method for AFC

In [48], an elegant method for initializing the backtrack operation in AFC
was proposed. Instead of sending Not_OK messages to all unassigned agents
in the inconsistent partial assignment, the agent whose domain emptied and
triggered a backtrack operation, sends a Backtrack message to the last agent
assigned in the inconsistent partial assignment (e.g., a Nogood). All other
agents receive a Nogood message which indicates that the former CPA is
inconsistent. The receiver of the Nogood generates a new CPA and continues
the search. The old CPA is detected as obsolete and discarded using the
following method for time-stamping CPAs:

• The time stamp is an array of counters, a single counter for each agent.
• An agent increments its counter when it performs an assignment.
• When two CPAs are compared, the more up-to-date is the one whose

time-stamp is larger lexicographically (i.e., the first different counter is
larger).

Using this method agents which receive a Not_OK method that reveals
the inconsistency of the former CPA and then receive the CPA itself simply
terminate the old CPA. The only CPA which will not be terminated is the
most updated according to the lexicographic time-stamp. The improvement in
performance of AFC with this method is presented in detail in the Chapter 11.
It turns out to be not very important, compared to the impact of ordering
heuristics on AFC [44] (see Chapter 8).

7

Concurrent Dynamic Backtracking

A different way of achieving concurrency for search on DisCSPs, both from
asynchronous backtracking and from asynchronous forward-checking, is to run
multiple search processes concurrently. Concurrent search performs multiple
concurrent backtrack search processes asynchronously on disjoint parts of the
DisCSP search space. Each search space includes all variables and therefore
involves all agents [25, 67, 70, 75]. One approach to concurrent search was
proposed by Hamadi and Bessiere in the interleaved parallel search algorithm
(IDIBT) [25]. IDIBT runs multiple processes of asynchronous backtracking
and its multiplicity is fixed at the start of its run [24, 25]. The performance of
IDIBT was found to deteriorate for more than two contexts (i.e., more than
two concurrent ABT processes) [25].

Concurrent search is a family of algorithms which perform multiple con-
current backtrack search processes asynchronously on disjoint parts of the
DisCSP search space. Each agent holds a set of data structures, one for each
search process. These data structures, which we term Search Processes (SPs),
include all the relevant data for the state of the agent on each of the search pro-
cesses. Agents in concurrent search algorithms pass their assignments to other
agents on a special type of message - a Current Partial Assignment (CPA).
Each CPA represents a single search process, and holds the agents’ current
assignments in the corresponding search process. An agent that receives a
CPA tries to assign its local variables with values that are not conflicting
with the assignments already on the CPA, using only the current domains in
the SP that is related to the received CPA. The uniqueness of the CPA for
every search space ensures that assignments are not done concurrently (and
conflictingly) in a single sub-search-space [69, 75].

An agent can generate a set of SPs and corresponding CPAs that split
the search space of a single SP whose CPA has passed through that agent,
by splitting the domain of one of its variables. Agents can perform splits
independently and keep the resulting data structures (SPs) privately. All other
agents need not be aware of the split; they process all CPAs in exactly the
same manner (see Section 7.2 and Figures 7.8 and 7.9). CPAs are created

64 7 Concurrent Dynamic Backtracking

either by the Initializing Agent (IA) at the beginning of the algorithm run,
or dynamically by any agent that splits an active search space during the
algorithm run. A simple heuristic of counting the number of times agents
pass a given CPA (without finding a solution) is used to determine the need
for resplitting of the search space traversed by that CPA. This generates
a mechanism of load balancing, creating more search processes on heavily
backtracked search spaces.

Figure 7.1 presents an example of a DisCSP, searched concurrently by
two search processes represented by two CPAs - CPA1 and CPA2. Each of
the four agents A1 to A4 holds two search processes (SPs). The domains of all
four agents are the same - {1..4}. The current domains of the SPs are shown in
Figure 7.1. The domains on the left represent the state after three assignments
to CPA1. The domains on the right-hand side of Figure 7.1 represent the state
after the second assignment to CPA2.

Fig. 7.1. Simple Concurrent Search with two CPAs

Agent A1 has assigned the value 1 on CPA1 and the value 3 on CPA2.
The values that are left in each of its domains are 2 in SP1 and 4 in SP2.
Agent A3 has assigned the value 2 to CPA1, having failed to assign the value
1. This leaves its current domain, for SP1, with the values [3,4]. The two CPAs

7.1 4-Queens with Concurrent Search 65

are traversing non intersecting sub-search-spaces in which CPA1 is exploring
all tuples beginning with 1 or 2 for agent A1, and CPA2 all tuples beginning
with 3 or 4. CPA1 is depicted on the LHS of Figure 7.1 and CPA2 is on the
RHS. CPA1 moves among the agents in the order A1 → A2 → A3. CPA2

moves in the order A1 → A4 →...
A backtrack operation is performed by an agent which fails to find a con-

sistent assignment with the partial assignment on the CPA that it is currently
holding. A backtrack operation sends a CPA backwards, requesting the receiv-
ing agent to revise its assignment on the CPA. Agents that have performed
dynamic splitting have to collect all of the returning CPAs of the relevant SP
before declaring that a sub-search-space does not contain a solution. In this
case all consistent values of the split domain have been sent forward on some
CPA and failed, which means the agent must perform a backtrack operation.

The search ends unsuccessfully when all CPAs return for backtrack to the
IA and the domain of the first variable of each CPA is empty. In this case
all the search processes are stopped. The search ends successfully if one CPA
contains a complete assignment, a value for every variable in the DisCSP.

There is no synchronization between the assignments performed in dif-
ferent SPs and the splitting of different CPAs. Due to the random choice
of the next agent and the dynamic asynchronous splitting of search spaces,
the steps of agents in different search process are interleaved in a non pre-
defined order. This makes concurrent search algorithms asynchronous [37].
The concurrent backtracking (ConcBT) algorithm runs multiple backtrack
search processes asynchronously. Search processes are initiated and stopped
dynamically and this dynamicity was found to enhance the performance of
both the original ConcBT [69] and the improved Concurrent Dynamic Back-
tracking (ConcDB) [75] algorithms to outperform all other DisCSP search
algorithms.

The best version of concurrent search is concurrent dynamic backtrack-
ing (ConcDB), which performs dynamic backtracking [23] on each of its con-
current sub-search spaces [75] (see Section 7.3). Since search processes are
dynamically generated by ConcDB, the performance of backjumping in one
search space can indicate that other search spaces are unsolvable. This feature,
combined with the random ordering of agents in each search process, enables
early termination of search processes discovered by ConcDB to be unsolvable.

7.1 4-Queens with Concurrent Search

To see the difference of concurrent search from asynchronous backtracking, let
us take the 4-queens example and run ConcBT on it (Figures 7.2 and 7.3).
Three concurrent search prosses (SPs) are started by agent A1. The three
SPs are represented by a triangle, a diamond, and a circle. In the first cy-
cle of computation, agent A1 splits its domain into three parts and assigns
values to the three SPs. These are values 1, 2, and 3. The three CPAs are

66 7 Concurrent Dynamic Backtracking

sent forward to different agents. SP1 (triangle) is sent to agent A2, SP2 (di-
amond) is sent to agent A3, and SP3 (circle) is sent to agent A4. Each agent
keeps a separate data structure for each SP and computes its assignments,
upon receiving a CPA, separately. In the second cycle of computation, agents
A2, A3, A4 compute concurrently, each assigning a value to its variable on the
CPA it is holding. Each assignment is consistent with all former assignments
on the CPA. Agent A2, for example, assigns the value 3 to CPA1. Having
performed their assignments, all agents send the CPAs to unassigned agents.
A2 sends CPA1 to agent A3, agent A3 sends CPA2 to agent A4, and agent
A4 sends CPA3 to agent A2.

Fig. 7.2. First cycle of ConcBT on
4-queens

Fig. 7.3. Second cycle of ConcBT on
4-queens

In cycle 3 again agents A2, A3, A4 are active. Agent A4 performs a com-
patible assignment on CPA2 and sends it further. It sends it to the only
unassigned agent of CPA2 (diamond), agent A2. Agent A2 cannot find a
compatible assignment to its variable on CPA3 (circle). As a result, it sends
CPA3 in a backtrack step to agent A4. Similarly, agent A3 cannot assign
its variable CPA1 (triangle) and sends CPA1 in a backtrack message to its
predecessor, agent A2. Cycle 3 is shown in Figure 7.4.

It is easy to follow the next steps of computation. Agents A2 and A4

adjust their positions (values) in cycle 4, to be compatible with the backtrack
messages they received. In cycle 5 agent A2 receives two messages. One is from
agent A4 that sent it CPA3 (circle), having revised its assignment from value
1 to value 2. The other message contains CPA2 (diamond) with agent A4’s
assignment. For clarity of presentation agent A2 performs the assignments on
these two CPAs in two separate cycles of computation. In cycle 5 it assigns
CPA3 with the value 1. CPA3 is then sent to the only unassigned agent on
it - A3 (the arrow in Figure 7.5). In cycle 6 it assigns CPA2 with the value
4, thus completing a solution. It is important to note that at the same cycle
agent A3 completes another solution concurrently; that of CPA3 (circle), as
can be seen in Figure 7.6.

7.2 The ConcBT Algorithm 67

Fig. 7.4. Cycle 3 of ConcBT on 4-queens

7.2 The ConcBT Algorithm

Concurrent backtracking (ConcBT) is the common part to several concurrent
search algorithms. Its best extension, the Concurrent Dynamic Backtracking
(ConcDB) algorithm, will be described in detail in Section 7.3. The main data
structure that is used and passed between the agents in concurrent search is a
current partial assignment (CPA). A CPA contains an ordered list of triplets
< Ai, Xj , val >, where Ai is the agent that owns the variable Xj and val is
a value, from the domain of Xj , assigned to Xj . This list of triplets starts
empty, with the agent that initializes the search process, and includes more
assignments as it is passed among the agents. Each agent adds to a CPA that
passes through it, a set of assignments to its local variables that is consistent
with all former assignments on the CPA. If successful, it passes the CPA to
the next agent. If not, it backtracks, by sending the CPA to the agent from
which it was received.

Every agent that receives a CPA for the first time creates a local data
structure which we call a search process (SP). This is true also for the ini-
tializing agent (IA), for each created CPA. The SP holds all data on current
domains for the variables of the agent, such as the remaining and removed
values during the path of the CPA.

68 7 Concurrent Dynamic Backtracking

Fig. 7.5. Cycle 5 of ConcBT on 4-queens

The structure of the ID of a CPA and its corresponding SP is a pair
< A, j >, where A is the ID of the agent that created the CPA and j is
the number of CPAs this agent created so far. This enables all agents to
create CPAs with a unique ID. When a split is performed during search, the
generated CPA has a unique ID and carries the ID of the CPA from which
it was split.

Although any agent can split its domain, the current version of the algo-
rithm splits search spaces as high as possible in the search tree. This gener-
ates split sub-search-spaces that are as large as possible and a larger number
of agents participate in the divided search procedure. When agents have no
further opportunity to split an SP because of lack of values in their cur-
rent domain, split messages are transferred down the search tree to agents
lower in the current order of the search (see Algorithm 7.2, procedure per-
form_split, lines 2, 8 and 9). Note that different concurrent search processes
are ordered differently. Therefore, the splitting of the search space occurs at
different agents in different concurrent SPs.

Splitting the search space on some variable divides the values in the domain
of this variable into several groups. Each subdomain defines a unique sub-
search-space and a unique CPA traverses this search space. Dynamic splitting

7.2 The ConcBT Algorithm 69

Fig. 7.6. Cycle 6 of ConcBT on 4-queens

is triggered by the number of assignment steps performed on a CPA, without
returning back to its initiator. This is an intuitive meaning of thrashing and
can be based on a simple threshold for the number of unsuccessful assignments
- steps_limit.

The following terminology is used in the description of all concurrent search
algorithms:

• CPA_generator: every CPA carries the ID of the agent that created it.
• origin_SP : an agent that performs a dynamic split holds in each of the

new SPs the ID of the SP it was split from (i.e., of origin_SP). An
analogous definition holds for origin_CPA. The origin_SP of an SP
that was not created in a dynamic split operation is its own ID.

• split_set: the set of SP IDs, that are stored in an origin_SP . Every
origin_SP holds in its split_set the IDs of all the SPs for which it is
their origin (i.e., all SPs which were split from it by the agent holding
it). For every active SP, the only split_set relevant is the split_set of its
origin_SP .

• steps_limit: the number of steps (from one agent to the next) that will
trigger a split, if the CPA does not find a solution or does not return to
its generator.

70 7 Concurrent Dynamic Backtracking

Algorithm 7.1: Main and Assign parts of Concurrent Search
Concurrent_Search:
1. done ← false
2. if(IA) then initialize_SPs
3. while(not done)
4. switch msg.type
5. split: perform_split
6. stop: done ← true
7. CPA: receive_CPA
8. backtrack: receive_CPA

receive_CPA:
1. CPA ← msg.CPA
2. if(first_received(CPA.ID))
3. create_SP(CPA.ID)
4. if(CPA.generator = ID)
5. CPA.steps ← 0
6. else
7. CPA.steps ++
8. if(CPA.steps = steps_limit)
9. splitter ← select_assigned_agent
10. CPA_steps← 0
11. send(split_msg splitter)
12. if(msg.type = backtrack)
13. remove_last_assignment
14. assign_CPA

assign_CPA:
1. CPA ← assign_local
2. if(is_consistent(CPA))
3. if(is_full(CPA))
4. report_solution
5. stop
6. else
7. send(CPA, next_agent)
8. else
9. backtrack

initialize_SPs:
1. for i ← 1 to domain_size
2. CPA ← create_CPA(i)
3. SP[i].domain ← first_var[value_i]
4. create_SP(CPA.ID)
5. assign_CPA

1

The messages exchanged by agents in concurrent search are the following:

• CPA - the message carrying a Current Partial Assignment.
• backtrack_msg - a CPA sent in a backtrack operation.
• stop - a message indicating the end of the search.
• split - a message that is sent in order to trigger a split operation. Contains

the ID of the SP to be split.

Algorithm 7.1 and Algorithm 7.2 present the functions which are per-
formed in any type of concurrent search algorithm. The main function of the
algorithm and functions that perform assignments on the CPA when it moves
forward are presented in Algorithm 7.3.

• The main function Concurrent_Search is run by all agents. If it is run
by the initializing agent (IA), it initializes the search by creating multi-
ple SPs, assigning each SP with one of the first variable’s values. After
initialization, it loops forever, waiting for messages to arrive.

• receive_CPA first checks if the agent holds an SP with the ID of the
current_CPA and, if not, creates a new SP. If the CPA is received by its

7.2 The ConcBT Algorithm 71

Algorithm 7.2: Backtrack and Split procedures for concurrent search
backtrack:
1. delete(CPA.ID from origin_SP.split_set)
2. if(origin_SP.split_set is_empty)
3. if(IA)
4. CPA ← no_solution
5. if(no_active_CPAs)
6. report_no_solution
7. stop
8. else
9. send(backtrack, last_assignee)
10. else
11. mark_fail(CPA)

perform_split:
1. if(not_backtracked(CPA))
2. var ← select_split_var
3. if(var 6= null)
4. create_split_SP(var)
5. create_split_CPA(SP.ID)
6. add(CPA.ID to origin_SP.split_set)
7. assign_CPA
8. else
9. send(split, next_agent)

stop:
1. send(stop, all_other_agents)
2. done ← true

generator, it changes the value of the steps counter (CPA_steps) to zero.
This prevents unnecessary splitting. Otherwise, it checks whether the CPA
has reached the steps_limit and a split must be initialized (lines 7-9). The
splitting agent, which we term splitter, is selected to be any one of the
assigned agents (line 9). A specific heuristic for splitting is to send the split
message to the CPA_generator (as defined above the CPA_generator is
the first part of any CPA_ID). This is equivalent to splitting the search
tree as high as possible. Before assigning the CPA a check is made of
whether the CPA was received in a backtrack_msg. If so, the previous
assignment of the agent, which is the last assignment made on the CPA,
is removed before assign_CPA is called (lines 12-13).

• assign_CPA tries to find an assignment for the local variables of the
agent which is consistent with the assignments on the CPA. If it succeeds,

72 7 Concurrent Dynamic Backtracking

the agent sends the CPA to the selected next_agent (line 7). If not, it
calls the backtrack method (line 9).

The rest of the functions of concurrent search are presented in Algorithm 7.2.

• The backtrack method is called when a consistent assignment cannot be
found in a SP. Since a split might have been performed by the current
agent, a check is made of whether all the CPAs in the split_set of the
origin_CPA of the backtracking CPA have also failed (line 2). If not,
then only the current CPA is marked (line 11) and no further action need
take place. When all split CPAs have returned unsuccessfully, the search
space of the SP is unsolvable and a backtrack operation is initialized.
In the case of an IA, the SP and the corresponding origin_CPA are marked
as a failure (lines 3-4). If all other CPAs are marked as failures, the search
is ended unsuccessfully (line 6). If the current agent is not the IA, a back-
track message is sent to the agent whose assignment is the latest of the
assignments included in the inconsistent CPA (line 9).

• The perform_split method tries to find in the SP specified in the
split_message, a variable with a non-empty current_domain. It first
checks that the CPA to be split has not been sent back already, in a
backtrack message (line 1). If it does not find a variable for splitting, it
sends a split_message to next_agent (lines 8-9). If it finds a variable to
split, it creates a new SP and CPA, and calls assign_CPA to initialize
the new search (lines 3-5). The ID of the generated CPA is added to the
split set of the divided SPs origin_SP (line 6).

Figure 7.7 extends the example presented in Figure 7.1. For each SP (ex-
cept for the ones holding the corresponding CPA), the content of the origin
and the split-set are displayed. The origin of all SPs except for the SPs of
agent A1 are their own IDs since they were not created in a dynamic split
operation. Their split-set includes only their own ID, since they are not yet
an origin of any SP created by a dynamic split operation. In this example the
SP < 1, 2 > held by agents A2 and A3 will only be created when they will
first receive the corresponding CPA. The origin of SP < 1, 2 > is the SP
it was split from, which is < 1, 1 >. The split set of SP < 1, 2 > is empty
since the relevant split-set is only its origin_SP ’s split-set. The split-set of
SP < 1, 1 >, includes its own ID and the ID of the SP that was split from it,
which is < 1, 2 >

7.2.1 A splitting of search space example

To visualize the main feature of concurrent search, the dynamic splitting of
search spaces, consider the constraint network that is described in Figure 7.8
(taken from [75]). All three agents own one variable each, and the initial
domains of all variables contain four values {1..4}. The constraints connecting
the three agents are: X1 < X2, X1 > X3, and X2 < X3. The initial state

7.2 The ConcBT Algorithm 73

Fig. 7.7. Concurrent search with two CPAs - contents of data structures

of the network is described on the LHS of Figure 7.8. In order to keep the
example small, no initial split is performed, only dynamic splitting. The value
of steps_limit in this example is 4. The first five steps of the algorithm run
produce the state that is depicted on the RHS of Figure 7.8. The circled values
in the current domains of agents X1 and X2 are the assigned values on the
CPA. The current domain of X2 had only two values left, [3, 4]. X3 is now
holding the CPA and has no assignment that is consistent with it.

The run of the algorithm during these five steps is as follows:

1. X1 assigns its variable the value 1, and sends to X2 a CPA with a step
counter CPA_steps = 1.

2. X2 assigns its variable the value 2, and sends the CPA with both assign-
ments, and with CPA_steps = 2, to X3.

3. X3 cannot find any assignment consistent with the assignments on the
CPA. It passes the CPA back to X2 to reassign its variable, with
CPA_steps = 3.

4. X2 reassigns its variable with the value 3, and sends the CPA again to
X3 after raising the step counter to 4.

5. X3 receives the CPA with X2’s new assignment.

74 7 Concurrent Dynamic Backtracking

Fig. 7.8. Initial state and the state after the CPA travels five steps without return-
ing to its initializing agent

In the current step of the algorithm, agent X3 receives a CPA which has
reached the step_limit. It has to generate a split operation. Before trying to
find an assignment for its variable, X3 sends a split message to X1 which is
the CPAs generator and changes the value of the CPA_steps counter to 0.
Next, it sends the CPA to X2 in a backtrack message. The algorithm run
proceeds as follows:

• When X1 receives the split message it performs the following operations:
– Creates a new (empty domain) SP data structure.
– Deletes values 3 and 4 from its original domain and inserts them into

the domain of the new split SP.
– Creates a new CPA and assigns it 3 (a value from the new domain).
– Sends the new CPA to a randomly selected agent.

• Other agents that receive the new CPA create new SPs with a copy of
their initial domain.

The resulting split search spaces are depicted in Figure 7.9. Circled values
represent those that are currently assigned on the corresponding CPA1 or
CPA2. After the split, two CPAs are passed among the agents. The two
CPAs perform search on two non intersecting search-spaces. In the original
SP after the split, X1 can assign only values 1 or 2 (see LHS of Figure 7.9).

7.3 Concurrent Dynamic Backtracking 75

Fig. 7.9. Non-intersecting search spaces - two different CPAs

The search on the original SP is continued from the same state it was in before
the split. Agents X2 and X3 continue the search using their current domains
to assign the original CPA. Therefore, the current domain of X2 (on SP1)
does not contain values 1 and 2 which were eliminated in earlier steps. In the
newly generated search space, X1 has the values [3, 4] in its domain. Agent
X1 assigns 3 to its variable and the other agents that receive CPA2 check the
new assignment against their full domains (RHS of Figure 7.9).

7.3 Concurrent Dynamic Backtracking

The method of backjumping that is used in the ConcDB algorithm is based on
Dynamic Backtracking [23]. Each agent that removes a value from its current
domain stores the partial assignment that caused the removal of the value.
This stored partial assignment is called an eliminating explanation by [23].
When the current domain of an agent empties, the agent constructs a back-
track message from the union of all assignments in its stored removal ex-
planations. The union of all removal explanations is an inconsistent partial
assignment, or a Nogood [23, 61]. The backtrack message is sent to the agent
which is the owner of the most recently assigned variable in the inconsistent
partial assignment.

76 7 Concurrent Dynamic Backtracking

Algorithm 7.3: Main methods for ConcDB

ConcDB:
1. done ← false
2. if(IA) then initialize_SPs
3. while(not done)
4. switch msg.type
5. split: perform_split
6. stop: done ← true
7. CPA: receive_CPA
8. backtrack: receive_CPA
9. unsolvable: mark_unsolvable(msg.SP)

receive_CPA:
1. CPA ← msg.CPA
2. if(unsolvable SP)
3. terminate CPA
4. else
5. if(first_received(CPA_ID))
6. create_SP(CPA_ID)
7. if(CPA_generator = ID)
8. CPA_steps ← 0
9. else
10. CPA.steps ++
11. if(CPA_steps = steps_limit)
12. splitter ← CPA_generator
13. send(split_msg, splitter)
14. if(msg.type = backtrack)
15. check_SPs(CPA.inconsistent_assignment)
16. last_sent_CPA.remove_last_assignment
17. CPA← last_sent_CPA
18. if(sp.split_ahead)
19. send(unsolvable, sp.next_agent)
20. sp.rename_SP
21. assign_CPA

In concurrent dynamic backtracking, a short Nogood can rule out multi-
ple sub-search-spaces, all of which contain no solution and are thus unsolvable.
In order to terminate the corresponding search processes, an agent that re-
ceives a backtrack message performs the following procedure:

• Detect the SP to which the received (backtrack) CPA either belongs or
was split from.

• Check if the CPA corresponding to the detected SP was split down its
path.

• If it was:

7.3 Concurrent Dynamic Backtracking 77

Algorithm 7.4: Dynamic backtracking of ConcDB

backtrack:
1. delete(current_CPA from origin_split_set)
2. if(origin_split_set is_empty)
3. if(IA)
4. CPA ← no_solution
5. if(no_active_CPAs)
6. report_no_solution
7. stop
8. else
9. backtrack_msg ←

inconsistent_assignment
10. send(backtrack_msg,

lowest_priority_assignee)
11. else
12. mark_fail(current_CPA)

mark_unsolvable(SP)
1. mark SP unsolvable
2. send(unsolvable, SP.next_agent)
3. for each split_SP in SP.origin.split_set
4. mark split_SP unsolvable
5. send(unsolvable, split_SP.next_agent)

check_SPs(inconsistent_assignment)
1. for each sp in {SPs \ current_SP}
2. if(sp.contains(inconsistent_assignment))
3. send(unsolvable, sp.next_agent)
4. last_sent_CPA.remove_last_assignment
5. CPA ← last_sent_CPA
6. sp.rename_SP
7. assign_CPA

– Send an unsolvable message to the next_agent of the related SP, thus
generating a series of messages along the former path of the CPA.

– choose a new unique ID for the CPA received and its related SP.
– continue the search using the SP and CPA with the new ID.

• Check if there are other SPs which contain the inconsistent partial as-
signment received (by calling function check_SPs), send corresponding
unsolvable messages and resume the search on them with new generated
CPAs.

The change of ID makes the resumed search process independent of the
process of terminating unsolvable search spaces. If the agents would have
resumed the search using the ID of the original SP or of the received CPA,

78 7 Concurrent Dynamic Backtracking

a race condition would arise since there is no synchronization between the
process of terminating unsolvable search procedures to that of the resumed
valid search procedure. In such a case, an agent that received an unsolvable
message might have marked an active search space as unsolvable.

The unsolvable message used by the ConcDB algorithm, is a message not
used in general concurrent search (e.g., ConcBT). It indicates an unsolvable
sub-search-space. An agent that receives an unsolvable message performs the
following operations for the unsolvable SP and each of the SPs split from it:

• mark the SP as unsolvable.
• send an unsolvable message which carries the ID of the SP to the agent

to whom the related CPA was last sent.

Algorithm 7.3 and Algorithm 7.4 present the methods ConcDB, re-
ceive_CPA, and backtrack, that were changed from the general description
of concurrent search in Algorithm 7.1 and Algorithm 7.2. Algorithm 7.4 con-
tains also two additional methods needed for adding Dynamic Backtracking
to concurrent search.

In method receive_CPA a check is made in lines 2, 3 whether the SP
related to the received CPA is marked unsolvable. In such a case the CPA is
not assigned and the related SP is terminated. If the split_limit is reached
the split message is sent to the generator of the CPA to create the split as
high as possible in the search tree (lines 11-13). This is a specific heuristic
for select_assigned_agent of the general receive_CPA in Algorithm 7.1
(line 9). For a backtracking CPA (lines 14-20) a check is made whether there
are other SPs which can be declared unsolvable. This can happen when the
head (or prefix) of their partial assignment (their common head, CH) contains
the received inconsistent partial assignment. Procedure check_SPs for every
such SP found, initiates the termination of the search process on the unsolv-
able sub-search-space and resumes the search with a newly generated CPA.
Next, a check is made of whether the SP was split by agents who received
the CPA after this agent (line 18) (this fact can be recorded on the CPA
when its holder initiates the split). If so, the termination of the unsolvable SP
is initiated by sending an unsolvable message. A new ID is assigned to the
received CPA and to its related SP (line 20).

The inconsistent partial assignment received in the backtrack message
may rule out more than one active search process. The check performed by
the function check_SPs triggers the termination of these inconsistent search
processes. For each of the terminated SPs a new CPA is created and the search
process is resumed after the culprit assignment is revised.

In method backtrack, the agent inserts the culprit inconsistent partial
assignment into the backtrack message (line 9) before sending it back in line
10. This is the only difference from the standard backtrack method in Algo-
rithm 7.2.

As described above, method mark_unsolvable is part of the mechanism
for terminating SPs on unsolvable search spaces. The agent marks the SP

7.4 Correctness of Concurrent Search 79

related to the message received, and any SP split from it, as unsolvable and
sends unsolvable messages to the agents to whom the corresponding CPAs
were sent.

7.4 Correctness of Concurrent Search

To prove the correctness of a search algorithm for DisCSPs one needs to
prove that it is sound, complete, and that it terminates. A central fact that
can be established immediately is that agents send forward only consistent
partial assignments. This fact can be seen at lines 1, 2 and 7 of procedure as-
sign_CPA in Algorithm 7.1. This implies that agents process, in procedure
assign_CPA, only consistent CPAs. Since the processing of CPAs in this
procedure is the only means for extending partial assignments, the following
lemma holds:

Lemma 7.4.1 Concurrent search extends only consistent partial assignments.
The partial assignments are received via a CPA, extended and sent forward
by the receiving agent.

The following theorem derives immediately from Lemma 7.4.1.

Theorem 7.4.2 Concurrent search is sound.

The only lines of the algorithm that report a solution are lines 3, 4 of
procedure assign_CPA. These lines follow a consistent extension of the
partial assignment on a received CPA. It follows that a solution is reported
iff a CPA includes a complete and consistent assignment. �

To prove completeness for concurrent search, one needs first to elimi-
nate the stopping condition for the first solution (lines 3-5 of function as-
sign_CPA in Algorithm 7.1). Another important point is the exact manner
in which domains of values of variables are scanned for the next consistent
assignment. Values for assignment are selected only in line 1 of the function
assign_CPA. For the completeness proof one naturally assumes that the
function assign_local, that is run by every agent, scans all values of the cur-
rent domain exactly once. This is equivalent to the common assumption in all
exhaustive backtracking algorithms that all values are tried until a consistent
assignment is found (cf. [31]).

With the above assumptions, the completeness of concurrent search is
established in three steps. First, for the case of a single CPA. Then, for several
CPAs generated by the IA. Finally, for dynamic generation of CPAs during
search. The following lemma establishes the completeness of the 1-CPA case.

Lemma 7.4.3 Concurrent search sends forward in a CPA every consistent
partial assignment.

80 7 Concurrent Dynamic Backtracking

To prove Lemma 7.4.3, one proceeds in analogy to the proof of complete-
ness for centralized backtrack by Kondrak and van Beek [31]. With no loss of
generality assume that every agent holds one variable. Assume that there is
some consistent assignment (X1, X2, . . . Xk) of length k that is not received
by any agent. Take the highest j < k, such that assignment (X1, X2, . . . Xj−1)
is sent forward (by agent j − 1) on a CPA that is received by agent j, there
is at least one, sent by the initializing agent. Agent j, has a consistent as-
signment (X1, X2, . . . Xj) that extends (X1, X2, . . . Xj−1), being a subtuple of
(X1, X2, . . . Xk). When agent j extends the received CPA, it succeeds in a
consistent partial assignment (X1, X2, . . . Xj) and sends it forward. This can
be seen clearly in lines 1, 2, 7 of function assign_CPA in Algorithm 7.1.
This contradicts the above assumption on the maximality of the assignment
(X1, X2, . . . Xj−1) that is sent forward. �

To complete the correctness proof one also needs to show that concurrent
search terminates. The messages of concurrent search carry CPAs and move
either forward or backward. The number of backward moves is finite, since
each backward move deletes a value from the domain of the receiving agent
(lines 10-11 of function receive_CPA in Algorithm 7.1). To prove termina-
tion one needs to show that there can only be a finite number of forward moves
(i.e., carrying CPAs). Every agent keeps its current domain in the SP struc-
ture and scans its values exactly once for every different partial assignment
received on a CPA. Every move forward carries a consistent partial assign-
ment (by Lemma 7.4.3). There is a finite number of different consistent partial
assignments, hence a finite number of forward moves in concurrent search.
Theorem 7.4.4 follows immediately.

Theorem 7.4.4 The 1-CPA version of concurrent search is complete and
terminates.

Having shown the correctness of concurrent search for a single CPA, one
needs to show correctness for the more general case of multiple CPAs gener-
ated at the algorithm start.

Theorem 7.4.5 A version of concurrent search which includes a single split
into k search processes at the beginning of the search is complete and termi-
nates.

Consider a CPA, Ci, that corresponds to a partial domain of one variable
of the initializing agent and is passed through the network of all agents. Each
agent Aj it passes through generates a data structure SPi with all domains of
its local variables (lines 2, 3 of procedure receive_CPA). The only difference
between the data structures corresponding to Ci and those that are generated
for a 1-CPA version of concurrent search is in the structure SPi of the ini-
tializing agent. In every other agent, the data structure SPi and the code it
runs are exactly equal to those run for concurrent search with one CPA. For
agents different than the IA, the search procedure of Ci scans exactly the

7.4 Correctness of Concurrent Search 81

same subspace that is scanned for the 1-CPA version of concurrent search.
Consequently, the search procedure corresponding to Ci is correct.

The union of all domain values of the selected variable for a split (in the IA)
is exactly equal to the original domain of values of that variable. As shown
above, the search sub-trees spanned by all agents that are not the IA, are
equal to those spanned for the 1-CPA algorithm. Each of those equal search
subspaces is scanned completely and correctly and all these scans terminate
and are performed for every value of the variable of the IA that was selected for
the split operation. Consequently, the union of the sub-trees that corresponds
to each of the CPAs is exactly equal to the search tree that is spanned by the
one-CPA version of concurrent search. �

The final step in the correctness proof of concurrent search is to show
that a dynamic split operation does not interfere with the correctness of the
algorithm.

Theorem 7.4.6 Concurrent Search with dynamic splitting is complete and
terminates.

Consider agent Ai which is not the initializing agent, that receives a
split_msg and runs the procedure perform_split. It sends forward one or
more consistent CPAs that represent non intersecting sub-search-spaces. The
completeness and termination of the search on each of these sub-search-spaces
follows from the completeness of the search initialized by any CPA of an ini-
tializing agent. Agent Ai will declare no solution by sending a backtrack mes-
sage, only after all of its split-SPs failed (lines 1, 2 of procedure backtrack).
In other words, backtracking from multiple CPAs preserves completeness at
the splitting agent. The condition to receive failure messages for all values for
which a CPA was generated ensures that backtrack corresponds exactly to
the case where there is no solution in the scanned search space. The sum of
the number of tuples explored in the split search space is equal to the number
of tuples in the original search space and therefore the algorithm termination
is not affected by the split. �

For the completeness of ConcDB one needs to show also that the addi-
tional mechanism for terminating unsolvable search processes on unsolvable
sub-search-spaces does not terminate a search process which explores a sub-
search-space that includes a solution. To do so we continue as follows. In every
sub-search-space, all tuples of assignments share the head (or prefix) of the
assignment. Thus for every sub-search-space we define:

Definition 7.1. A common head (CH) is the maximal prefix of assignments
which is included in all partial assignments in a sub-search-space.

Lemma 7.4.7 A sub-search-space whose CH includes an inconsistent subset
of assignments does not include a solution to the DisCSP.

82 7 Concurrent Dynamic Backtracking

The proof of Lemma 7.4.7 derives from the method of constructing an in-
consistent assignment in dynamic backtracking [23]. A partial assignment is
declared inconsistent only if it causes an empty domain in one of the variables.
This implies that this partial assignment cannot be part of a solution. From
definition 7.1 we derive that if a CH includes an inconsistent partial assign-
ment, it must be included in all the assignments in its related sub-search-space,
which means that none of these assignments is a solution to the DisCSP. �

Theorem 7.4.8 ConcDB does not terminate search-processes which lead to
a solution.

ConcDB terminates a search process by sending forward unsolvable mes-
sages (line 19 in function receive_CPA, line 5 in function mark_unsolvable,
line 3 in function check_SPs). Only SPs that have a CH that is an extension
of the CH that was found inconsistent are marked unsolvable. The search on
these SPs is terminated when the agent receives the CPA corresponding to
the unsolvable SP (lines 2, 3 of function assign_CPA). Lemma 7.4.7 implies
the proof for Theorem 7.4.8. It is immediately clear from Theorem 7.4.8 that
all partial assignments that lead to a solution will be extended, which implies
the completeness of ConcDB. �

8

Distributed Ordering Heuristics

Ordering heuristics, for both variables and values, play an important role
in centralized CSP search [14]. Orders of variables can be either static or
dynamic. If variables are ordered before the start of the run of the search
algorithm and the order is not changed during the run of the algorithm, it
is called static. Such a heuristic does not take into consideration changes in
the relations among variables that occur during search. A typical example of
a static ordering heuristic is to use the features of the constraints graph. A
popular example is to select variables with a high degree to be higher in the
order [15]. A higher degree means that the variable is constrained by a larger
number of variables. A common search heuristic is to try earlier branches on
the search tree that have a higher chance to fail. Variables that are constrained
by a larger number of other variables seem more likely to fail, so they are
selected to be higher in the static order that is based on the constraint graph.
This general approach, of trying earlier variables that have a higher chance
to fail, is called the fail-first principle (cf. [16]). It is considered to lead to a
more effective pruning since it potentially prunes (fails) nodes earlier.

Since the early 1990s researchers in standard (centralized) CSPs have
found that dynamic ordering heuristics are far more successful than static
heuristics. The standard use of dynamic ordering is to select the next variable
to be assigned. The idea is that during search many parameters of the variables
change dynamically. If search takes the form of assigning values to variables
one after the other, a natural place to insert the ordering heuristics is to pause
for computation immediately after the assignment of some variable. Based on
the results of the computation, the next variable to be assigned is selected. A
very simple and very successful general heuristic is to select the variable with
the smallest domain size among the unassigned variables. A small domain
size seems intuitively to represent a faster way to fail (smaller number of
trial assignments), so it conforms with the above principle of Fail First (FF).
In fact, the FF principle is nowadays used synonymously with selecting the
smallest domain.

84 8 Distributed Ordering Heuristics

The use of ordering heuristics in distributed search is a much more complex
problem. The best known algorithm - asynchronous backtracking (ABT) -
uses static ordering of agents, simply by the agents’ IDs [64]. As we have
seen, the static order of agents is essential for the proof of correctness of ABT
(see Chapter 5).

There are two main points that need consideration for ordering a dis-
tributed search algorithm:

• Agents in a DisCSP do not know the parameters of other agents during
search and therefore miss information that is needed in order to make
ordering decisions.

• When the search algorithm is asynchronous the meaning of ordering of
assignments is not clear. Would a heuristic change anything? What should
be the rational?

The first point raises the need to accumulate knowledge about the state
of other agents during search. As we will show in the sections below, this can
be addressed by either additional computation or by additional information
that is sent by messages. The second point raises a very complex issue. When
the DisCSP search algorithm is either completely synchronous or performs
assignments sequentially, the intuitive meaning of ordering is still analogous
to that of centralized CSPs. A consistent partial assignment exists and a
next_agent has to be selected for assignment. This selection process, though
distributed, is similar to the centralized process. As we will see in the fol-
lowing two sections, the main difference from standard CSPs is the means of
processing the distributed information about states of agents. The heuristics
themselves are very similar to standard ones (e.g., Min-Domain).

For asynchronous backtracking, the situation is completely different. The
ABT algorithm uses strictly static ordering, that is essential for its correct-
ness proof [9]. A pioneering attempt to introduce dynamic ordering into asyn-
chronous backtracking, was proposed by Yokoo as early as 1995. The idea was
to implement a specific ordering, in which a failing (e.g., backtracking) agent
was always moved to be first in the global order [61, 62]. The algorithm was
called Asynchronous Weak-commitment (AWC) search in its original paper,
but is very similar to ABT. However, AWC needs exponential storage space in
order to store all potential Nogoods (cf. [61]). In 2005 a generalized version
of ABT was published, enabling a general dynamic order for agents [71, 73].
This version of asynchronous backtracking, that includes dynamic ordering -
ABT_DO, includes a special time-stamping mechanism that enables agents
to change their order and retain the correctness of asynchronous backtracking.
The issue of asynchrous ordering heuristics is presented in detail in Chapter 9,
including both the ABT_DO algorithm and several innovative asynchronous
heuristics.

8.1 Ordering heuristics for Synchronous Backjumping 85

8.1 Ordering heuristics for Synchronous Backjumping

In centralized CSPs, dynamic variable ordering is known to be an effective
heuristic for gaining efficiency [16]. A recent study has shown that the same
is true for algorithms which perform synchronous (sequential) search on dis-
tributed CSPs [11]. In fact, the essence of the study by Brito and Meseguer
in [11] is to show that simple distributed synchronous backjumping outper-
forms ABT on randomly generated DisCSPs. This strong result demonstrates
that an ordering heuristic can transform the performance of a synchronous
search algorithm into the class of an asynchronous algorithm that performs
its assignments and computations concurrently. Moreover, a synchronous (se-
quential assignments) algorihm may even improve on the concurrent algo-
rithm’s performance [11].

The different ordering heuristics can be divided into two groups, heuris-
tics which can be performed without additional overhead in messages and
heuristics that need this overhead.

8.1.1 Heuristics with no additional messages

The heuristics which do not need additional messages are either heuristics
which can be performed in any synchronous backtracking algorithm or heuris-
tics for which the additional information needed can be carried by the mes-
sages which are sent as part of the algorithm. The following examples all fall
into one of these characteristics.

• Random: an agent which successfully assigned its variables on the CPA
chooses randomly the next agent to send the CPA to, among all unassigned
agents.

• Estimation of minimum domain size for unassigned variables by each agent
maintaining an upper and a lower bound on the domain size of unassigned
variables that are ordered after it [11].

Brito and Meseguer propose a method for maintaining lower and upper
bounds on the domain sizes of agents by assigning agents [11]. It is assumed
that agents hold all the constraints they are involved in and know the ini-
tial size of the domains of other agents. In order to choose the next agent to
send the CPA, the agents maintain two bounds for the size of the domain of
each unassigned agent. Each agent that performs an assignment updates these
bounds according to the number of conflicts its new assignment has with each
of the unassigned agents. The lower bound of agent Aj is calculated by the
following formula:

l_boundj ← max(l_boundJ ,conflicts_num(< A_i, vi >,Aj))

The lower bound is the maximum between the former lower bound and
the number of conflicts the new assignment has. The upper bound of agent

86 8 Distributed Ordering Heuristics

Aj is calculated as follow:
u_boundj ← min(|Dj |,u_boundj + conflicts_num(< A_i, vi >,Aj))

The upper bound is the minimum between the size of the initial domain
and the sum of the former upper bound and the number of conflicts. After all
bounds are updated, if there exists an unassigned agent whose lower bound
is the size of its domain or is higher than any other upper bound of any
unassigned agent, the CPA is sent to it. Otherwise, it is sent to the agent
with the highest upper bound among all unassigned agents.

8.1.2 Heuristics with additional network overhead

Using additional messages which are not sent by the standard search algo-
rithm, one can in principle send the actual current domain size. When the
synchronous algorithm performs chronological backtracking, agents are able
to record their actual domain size on the CPA. This cannot be done exactly
if the algorithm uses backjumping. These two options of recording the actual
domain size and using it for ordering heuristics were compared by Brito and
Meseguer [11]. They report that dynamically ordered sequential backtrack-
ing outperformed backjumping, apparently because of the superior heuris-
tic computation [11]. The drastically improved performance of distributed
search algorithms that perform assignments sequentially is surprising and will
be presented among the many empirical comparisons of DisCSP algorithms
in Chapter 11. Our next step is to present below heuristic ordering methods
for concurrent search algorithms. First, for the sequentially assigning Asyn-
chronous Forward-Checking algorithm, which is close to synchronous algo-
rithms. Finally, for asynchronous backtracking (in Chapter 9), where the al-
gorithm itself needs to be changed in order to accomodate dynamic ordering
and maintain correctness.

8.2 Ordering heuristics for AFC

Since the assignments in the AFC algorithm are performed sequentially by
agents, as in the different versions of synchronous backtracking or synchronous
backjumping, after each successful assignment an agent can choose a different
agent to send the CPA to. The asynchronous forward-checking mechanism
enables heuristics which are not possible in simple synchronous algorithms.

An ordering heuristic for AFC that needs no additional messages is the
Nogood-triggered heuristic, which is inspired by dynamic backtracking [23]. The
idea is to move forward the agent which initialized the backtrack operation.
In AFC, in order to implement this idea an agent which receives a Not_OK

8.2 Ordering heuristics for AFC 87

message stores the ID of the agent it was received from. When the CPA is sent
backwards the sending agent records the ID of the sender of the Not_OK
message which triggered this backtrack operation on the CPA. The agent that
receives the backtrack message, after replacing its assignment, sends the CPA
to the triggering agent.

A heuristic for variable and value ordering was presented in [48] for the
direct backtracking version of AFC. Each agent holds a counter for each of
the values in its domain and for each of the other agents. The counters are
incremented as a result of a backtrack operation. When an agent encounters
an empty domain it decreases the counter of the culprit agent to which it
backtracks. The agent that receives the backtrack message increments the
counter of the sending agent. The sender of the backtrack message also checks,
for each value removed from its domain, which agent’s assignment was the
first to conflict with it. The counter of each of these agents is incremented
and a message is sent to them which indicates a possible conflict between the
sending agent and the current value of the receiving agent. An agent that
receives such a possible conflict message increases the counter of the sending
agent and the counter of its current value. When agents assign their variables
they choose the value with the lowest counter in their domain. When an agent
successfully assigns its variable, it chooses the agent with the highest counter
among the unassigned agents to send the CPA to. All of the above heuristics
will be compared empirically to both synchronous search and asynchronous
backtracking in Chapter 11. The improvement in performance induced by
ordering heuristics is very large.

In order to enable sound empirical evaluation of DisCSP algorithms, one
needs to define asynchronous performance measures for concurrent algorithms.
Such measures took a long time to appear on the stage of distributed con-
straints research [45] and were established and accepted by the DisCSP and
DisCOP community after DCR-04 [17]. Asynchronous measures of perfor-
mance for distributed search will be described in Chapter 10. In Chapter 11,
the empirical comparisons of the performance of many algorithms and their
dynamically ordered versions will be presented.

9

Asynchronous Ordering Heuristics

The case of asynchronous ordering is quite complex. Assignments of agents
are performed concurrently and asynchronously, so the selection of a next
agent to be assigned is not clear. The order of agentshere is expected to
have some impact, depending on the algorithm. However, unlike centralized
or synchronous search it is not clear how the order changes the traversal of
the search tree. Intuitively, a given order selects a subset of paths on the
search tree - those that have the nodes in a similar enough order. Since nodes
perform their computations asynchronously, two ordered agents Ai < Aj can
have their assignments performed in any order. The order just dictates that,
when the assignments of these two agents are part of a Nogood, only agent
Aj can backtrack to Ai and not vice versa.

An attempt to order the agents dynamically during the run of an asyn-
chronous search algorithm was performed quite early. In 1995 Yokoo proposed
an asynchronous search algorithm, similar to ABT, that does not use a static
order of agents. This first attempt at asynchronous ordering is described in the
following section. It uses a specific ordering, moving an agent that performs
a backtrack (e.g., sends a Nogood) to the top place in the order.

9.1 Specific Asynchronous Heuristics

As mentioned before, the first attempt to introduce dynamic ordering into
asynchronous backtracking was performed by Yokoo in 1995 (cf. [62, 63]).
The idea was to take ABT and make a small change, so that some reordering
would be done during search. The Asynchronous Weak Commitment (AWC)
algorithm implements a specific ordering heuristic. Order can be changed only
after a backtrack operation and only the agent sending the Nogood changes
its position. The only change of position is for the Nogood sending agent
to move to the first position and it must do so. This is a specific order-
ing heuristic, of moving all the way to the first position and it is performed
everytime that a Nogood message is sent. The code needed for AWC, in

90 9 Asynchronous Ordering Heuristics

addition to standard ABT that sends complete Agent_V iews as Nogoods
(Algorithm 5.1), is presented in Algorithm 9.1.

Algorithm 9.1: Additional code for the AWC algorithm
• procedure check_agent_view

1. when Agent_V iew and current_value are not consistent do
2. if no value in Di is consistent with Agent_V iew
3. then backtrack;
4. else select d ∈ Di where Agent_V iew and d are consistent and
5. d minimizes the number of constraint violations

with lower priority agents ;
6. current_value ← d;
7. send (ok?,(xi, d), current_priority) to neighbors;
8. end_if; end_do;

• procedure backtrack
1. nogood← inconsistent_subset;
2. when nogood is an empty set do
3. broadcast to other agents that there is no solution;
4. terminate; end_do;
5. when nogood is a new Nogood do
6. send nogood to the agents in the nogood
7. current_priority ← 1 + pmax

pmax is the maximal priority value over all neighbours
8. select d ∈ Di where Agent_V iew and d are consistent and
9. d minimizes the number of constraint violations

with lower priority agents;
10. current_value ← d;
11. send (ok?,(xi, d), current_priority) to neighbors;

As can be seen in Algorithm 9.1, another major heuristic for ordering
values is employed in AWC. Whenever a value is selected for assignment,
either in the check_agent_view procedure or during backtrack, the value
selected minimizes conflicts with lower priority agents. This is a very special
change from standard ABT, since in any version of ABT agents do not know
the value of lower-priority agents. The reason for this possiblity in AWC is
that ok? messages are sent to all neighnoring agents (line 7 in procedure
check_agent_view in Algorithm 9.1).

The interesting point about the AWC algorithm is that it can be easily
proven correct even with its reordering procedure. To see why it is correct, all
one needs is to observe that the correctness arguments for the ABT version
with complete Agent_V iews as Nogoods applies to AWC as well. Consider
the proof of correctness for ABT with complete Agent_V iews as Nogoods
in Section 5.3. Soundness applies immediately because an idle state means

9.2 Dynamically ordered ABT 91

that there are no constraint violation in any form of asynchronous backtrack-
ing. However, for completeness one needs to keep all the Nogoods that are
generated. This is because keeping all Nogoods guarantees termination. Due
to the changes in order all Nogoods may be relevant and must be kept. This
causes the worst drawback of the AWC algorithm, its need for exponential
storage in the worst case for storing all Nogoods.

9.2 Dynamically ordered ABT

The asynchronous backtracking algorithm, was presented in Chapter 5 in a
form follwing [9, 61]. In ABT agents hold an assignment for their variables at
all times, which is consistent with their view of the state of the system (i.e.,
the assignments of their neighboring agents). When the agent cannot find an
assignment which is consistent with the assignments of higher-priority neigh-
boring agents, it changes its view by sending a Nogood to an agent with
a conflicting assignment and eliminating this conflicting assignment from its
current view. Then it makes another attempt to assign its variable (see Chap-
ter 5).

The dynamically ordered asynchronous backtracking (ABT_DO) algo-
rithm that will be presented below is a simple algorithm for dynamic order-
ing in asynchronous backtracking. The ABT_DO algorithm uses polynomial
space, as does standard ABT. In ABT_DO the agents of the DisCSP choose
orders dynamically and asynchronously. Agents in ABT_DO perform accord-
ing to the current, most up-to-date order they hold. Each agent can change the
order of all agents with lower priority. An agent can propose an order change
each time it replaces its assignment. Each order is time-stamped according
to the assignments of agents. The method of time-stamping for defining the
most updated order is the same that was used in [48] (and described in Sec-
tion 6.3) for choosing the most up-to-date partial assignment. A simple array
of counters represents the priority of a proposed order, according to the global
search tree.

Each agent in ABT_DO holds a Current_order which is an ordered list
of pairs. Every pair includes the ID of one of the agents and a counter. Each
agent can propose a new order for agents that ha ave lower priority each time
it replaces its assignment. This makes the sending of an ordering proposal
message always coincide with an ok? message. An agent Ai can propose an
order according to the following rules:

1. Agents with higher priority than Ai, and Ai itself, do not change priorities
in the new order.

2. Agents with lower priority than Ai, in the current order, can change their
priorities in the new order but not to a higher priority than Ai itself. (This
rule enables a more flexible order than in the centralized case.)

92 9 Asynchronous Ordering Heuristics

The counters attached to each agent ID in the order list form a time stamp.
Initially, all time-stamp counters are set to zero and all agents start with the
same Current_Order. Each agent Ai that proposes a new order, changes the
order of the pairs in its own ordered list and updates the counters as follows:

1. The counters of agents with higher priority than Ai, according to the
Current_order, are not changed.

2. The counter of Ai is incremented by one.
3. The counters of agents with lower priority than Ai in the Current_order

are set to zero.

Consider an example in which agent A2 holds the following Current_order:
(1, 4)(2, 3)(3, 1)(4, 0)(5, 1). There are five agents A1 . . . A5 and they are or-
dered according to their IDs from left to right. After replacing its assignment
it changes the order to: (1, 4)(2, 4)(4, 0)(5, 0)(3, 0).
In the new order, agent A1 which had higher priority than A2 in the previous
order keeps its place and the value of its counter does not change. A2 also
keeps its place and the value of its counter is incremented by one. The rest
of the agents, which had lower priority than A2 in the previous order, change
places and are still located lower than A2. The new order for these agents is
A4, A5, A3 and their counters are set to zero.

In ABT, agents send ok? messages to their neighbors whenever they
perform an assignment. In ABT_DO, an agent can choose to change its
Current_order after changing its assignment. If that is the case, besides
sending ok? messages an agent sends order messages to all lower-priority
agents. The order message includes the agent’s new Current_order.

For simplicity of presentation we assume that agents send order messages
to all lower-priority agents. In the more realistic form of the algorithm, agents
send order messages only to their lower-priority neighbors. Both versions are
proven correct in Section 9.3.

An agent which receives an order message must determine if the received
order is more up-to-date than its own Current_order. It decides by compar-
ing the time stamps lexicographically. Since orders are changed according to
the above rules, every two orders must have a common prefix of the agents
IDs since the agent that performs the change does not change its own position
and the positions of higher priority agents. In the above example the common
prefix includes agents A1 and A2. Since the agent proposing the new order
increases its own counter, when two different orders are compared, at least
one of the time-stamp counters in the common prefix is different between the
two orders. The more up-to-date order is the one for which the first different
counter in the common prefix is larger. In the example above, any agent which
will receive the new order will know it is more up-to-date than the previous
order since the first pair is identical, but the counter of the second pair is
larger.

When an agent Ai receives an order which is more up-to-date than its
Current_order, it replaces its Current_order by the received order. The

9.2 Dynamically ordered ABT 93

new order might change the location of the receiving agent with respect to
other agents (in the new Current_order). In other words, one of the agents
that had higher priority than Ai according to the old order, now has a lower
priority than Ai or vice versa. Therefore, Ai rechecks the consistency of its
current assignment and the validity of its stored Nogoods according to the
new order. If the current assignment is inconsistent according to the new
order, the agent makes a new attempt to assign its variable. In ABT_DO
agents send ok? messages to all constraining agents (i.e., their neighbors in
the constraints graph). Although agents might hold in their Agent_views
assignments of agents with lower priorities, according to their Current_order,
they eliminate values from their domain only if they violate constraints with
higher priority agents.

A Nogood message is always checked according to the Current_order of
the receiving agent. If the receiving agent is not the lowest priority agent in the
Nogood according to its Current_order, it sends the Nogood to the lowest
priority agent and sends an ok? message to the sender of the Nogood. This
is a similar operation to that performed in standard ABT for any unaccepted
(inconsistent) Nogood.

Algorithm 9.2 and Algorithm 9.3 present the code of asynchronous back-
tracking with dynamic ordering (ABT_DO). When an ok? message is re-
ceived (first procedure in Algorithm 9.2), the agent updates the Agent_view
and removes inconsistent Nogoods. Then it calls check_agent_view to
make sure its assignment is still consistent.

A new order received in an order message is accepted only if it is more up
to date than the Current_order (second procedure of Algorithm 9.2). If so,
the received order is stored and check_agent_view is called to make sure
the current assignment is consistent with the higher priority assignments in
the Agent_view.

When a Nogood is received (third procedure in Algorithm 9.2) the agent
first checks if it is the lowest priority agent in the received Nogood according
to the Current_order. If not, it sends the Nogood to the lowest priority
agent and an ok? message to the Nogood sender (lines 1-3). If the receiving
agent is the lowest priority agent it performs the same operations as in the
standard ABT algorithm (lines 4-12).

Procedure backtrack (Algorithm 9.3) is the same as in standard ABT .
The Nogood is resolved and the result is sent to the lowest priority agent in
the Nogood, according to the Current_order.

Procedure check_agent_view (Algorithm 9.3) is very similar to the
same procedure in standard ABT but the difference is important (lines 5-
9). If the current assignment is not consistent and must be replaced and a
new consistent assignment is found, the agent chooses a new order, according
to the algorithms rules and the heuristic used, as its Current_order (line 7)
and updates the corresponding time stamp. Next, ok? messages are sent to
all neighboring agents. The new order and its time-stamp counters are sent
to all lower priority agents.

94 9 Asynchronous Ordering Heuristics

Algorithm 9.2: The ABT_DO algorithm (first part)
when received (ok?, (xj , dj):
1. add (xj , dj) to agent_view;
2. remove inconsistent nogoods;
3. check_agent_view;

when received (order, received_order):
1. if (received_order is more updated than Current_order)
2. Current_order ← received_order;
3. remove inconsistent nogoods;
4. check_agent_view;

when received (nogood, xj , nogood)
1. if (nogood contains an agent xk with lower priority than xi)
2. send (nogood, (xi, nogood)) to xk;
3. send (ok?, (xi, current_value) to xj ;
4. else
5. if (nogood consistent with {Agent_view ∪ current_assignment})
6. store nogood;
7. if (nogood contains an agent xk that is not its neighbor)
8. request xk to add xi as a neighbor;
9. add (xk, dk) to agent_view;
10. check_agent_view;
11. else
12. send (ok?, (xi, current_value)) to xj ;

9.3 Correctness of ABT_DO

In order to prove the correctness of the ABT_DO algorithm we first establish
two facts by proving the following lemmas:

Lemma 9.3.1 The highest priority agent in the initial order remains the
highest priority agent in all proposed orders.

The proof for Lemma 9.3.1 is immediate from the two rules of reordering.
Since no agent can propose a new order which changes the priority of higher
priority agents and its own priority, no agent including the first can move the
highest priority agent to a lower position. �

Lemma 9.3.2 When the highest priority agent proposes a new order, it is
more up to date than all previous orders.

This proof is again immediate. In all previous orders the time-stamp
counter of the first agent is smaller than the counter of the time-stamp counter
of the first agent in the new proposed order. �

9.3 Correctness of ABT_DO 95

Algorithm 9.3: Two additional procedures of the ABT_DO algorithm
procedure check_agent_view
1. if(current_assignment is not consistent with all

higher priority assignments in agent_view)
2. if(no value in Di is consistent with all higher priority

assignments in agent_view)
3. backtrack;
4. else
5. select d ∈ Di where agent_view and d are consistent;
6. current_value ← d;
7. Current_order ← choose_new_order
8. send (ok?,(xi, d)) to neighbors;
9. send (order,Current_order) to lower priority agents;

procedure backtrack
1. nogood ← resolve_inconsistent_subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. select (xj , dj) where xj has the lowest priority in nogood;
6. send (nogood, xi, nogood) to xj ;
7. remove (xj , dj) from agent_view;
8. remove all Nogoods containing (xj , dj);
9. check_agent_view;

To prove correctness of a search algorithm for DisCSPs one needs to prove
that it is sound, complete, and that it terminates. ABT_DO, like ABT,
reports a solution when all agents are idle and no messages are sent. Its
soundness follows from the soundness of ABT (see for example [9]). One point
needs mentioning. Since no messages are traveling in the system in the idle
state, all overriding messages have arrived at their destinations. This means
that for every pair of constraining agents an agreement about their pairwise
order has been achieved. One of each pair of constraining agents checks their
constraint and no messages mean no violations, as in the proof for ABT [9].

Theorem 9.1. ABT_DO is complete and it terminates.

To prove the completeness and termination of ABT_DO we use induc-
tion on the number of agents (i.e., number of variables) in the DisCSP. For
a single-agent DisCSP the order is static therefore the completeness and
termination of ABT implies the same for ABT_DO. Assume ABT_DO is
complete and terminates for every DisCSP with k agents, where k < n. Con-
sider a DisCSP with n agents. According to Lemma 9.3.1 the agent with
the highest priority in the initial order will not change its place. The highest

96 9 Asynchronous Ordering Heuristics

priority agent assigns its variable for the first time and sends it along with its
order proposal to other agents.

The remaining DisCSP has n − 1 agents and its initial order is that
proposed by the first agent (all other orders are discarded according to
Lemma 9.3.2). By the induction assumption the remaining DisCSP is com-
plete and terminates. If a solution to the induced DisCSP is found, this means
that the lower priority n − 1 agents are idle and so is the first (highest pri-
ority) agent since none of the others sends it any message. If a solution is
not found, by the n− 1 lower priority agents, either an empty Nogood was
found by one of the agents and the whole search is terminated, or a single as-
signment Nogood will be sent to the highest priority agent which will cause
it to replace its assignment. The new assignment of the first agent and the
new order proposed will induce a new DisCSP of size n − 1. The search on
this new DisCSP of size n − 1 is also complete and terminates according to
the induction assumption. The number of induced DisCSPs, created by the
assignments of the highest priority agent is bound by the size of its domain.
Therefore, the algorithm will terminate in a finite time. The ABT_DO al-
gorithm is complete since a solution to the DisCSP must include one of the
highest priority agent value assignments, which means that one of the induced
DisCSPs includes a solution iff the original DisCSP includes a solution.
This completes the correctness proof of ABT_DO �

If the network model, or privacy restrictions, enable agents to communi-
cate only with their neighbors in the constraint network, some small changes
are needed in order to maintain correctness. First, agents must be allowed to
change only the order of lower priority neighbors. This means that the method
choose_new_order, called in line 7 of procedure check_agent_view,
changes the order by switching between the position of lower priority neigh-
bors and leaving other lower priority agents at their current position. Second,
whenever an updated order message is received, an agent informs its neighbors
of its new Current_order.

In order to prove that the above two changes do not affect the correctness
of the algorithm we first establish the correctness of Lemmas 9.3.1 and 9.3.2
under these changes. Lemma 9.3.1 is not affected by the change since the rules
for changing agents positions have become more strict, and still do not allow
to change the position of higher priority agents. Lemma 9.3.2 holds because
the time-stamp mechanism which promises its correctness has not changed.
These lemmas are the basis for the correctness of the induction which proves
the algorithm is complete and terminates. However, we still need to prove
that the algorithm is sound. One of the assumptions that our soundness proof
depended on was that an idle state of the system would mean that every
constrained pair of agents agrees on the order between them. This claim might
not hold since the most up-to-date order is not sent to all agents. The following
lemma proves this claim is still true after the changes in the algorithm:

9.4 A new class of asynchronous heuristics 97

Lemma 9.3.3 When the system reaches an idle state, every pair of con-
strained agents hold the same order.

According to the changes described above, whenever one of the constrained
agents receives an updated order message, it informs its neighbors. Therefore,
all agents which have constraints with it will be notified and hold the up-
dated order. If two agents are not informed with the most up-to-date order,
this would mean that both of them are not lower priority neighbors of the
reordering agent and as a result their current position in the order stays
the same. Lemma 9.3.3 implies that the algorithm is sound for versions of
ABT_DO that are restricted to send messages only between pairs of con-
straining agents.�

9.4 A new class of asynchronous heuristics

The results presented in [72] have shown that the performance of ABT_DO is
highly dependent on the selected heuristic. The classic Min-Domain heuristic
was implemented by including the current domain size of agents in the mes-
sages they send. Surprisingly, this heuristic which in centralized algorithms
and in distributed algorithms using a sequential assignment protocol produces
a large improvement over static order, was found not to be efficient for Asyn-
chronous Backtracking. A heuristic which achieved a significant improvement
was inspired by dynamic backtracking [2, 23] in which the agent which sends
a Nogood is advanced in the new order to be immediately after the agent to
whom the Nogood was sent. The explanation for the success of this heuristic
is that it does not cause the removal of relevant Nogoods as do other heuris-
tics [72]. All of these results are presented in some detail in section 11.2.2.

The present section investigates further the relation between the success of
this heuristic and the min-domain heuristic which was found to be successful
for sequential assignments (synchronous) algorithms on DisCSPs [11, 44]. It
turns out that the effect of Nogood loss as a result of reordering is probably
the cause of the failure of the min domain heuristic. Removal of Nogoods
cause the return of values to the agents’ domains. This harms the accuracy
of the information that agents hold on the domain size of other agents. On
the other hand, the Nogood-triggered heuristic of [71] does not loose valid
information and moves agents with a potential of having a small domain to a
higher position.

In order to maximize the min-domain property, a more flexible heuristic
can be used, which belongs to a completely new class of asynchronous ordering
heuristics. The new class of dynamic ordering heuristics violates the restric-
tions on the ordering of agents in [72]. The idea is to employ changes of order
that move agents to a higher position, replacing agents that were ahead of
them including the first agent. This new type of heuristics is termed Retroac-
tive ordering and is based on a slightly modified version of the ABT_DO
algorithm.

98 9 Asynchronous Ordering Heuristics

The main idea behind the new class of heuristics is that moving the No-
good sender as high as possible in the priority order is successful only if
the domain size of agents is taken into consideration. In other words, in the
combined min-domain scheme agents are moved to a higher position only if
their current domain size is smaller than the current domain of agents they
are moved in front of. Moving an agent before the agents which are included
in the Nogood actually enlarges its domain. The best heuristic found experi-
mentally in Section 11.2.2 is that agents which generate a Nogood are placed
in the new order between the last and the second last agents in the generated
Nogood. This heuristic is the asynchronous form of the Min-Domain heuris-
tic. Results on both random DisCSPs and on structuredDisCSPs show that
the proposed heuristic improves the best results to date [72] by a large factor.

To understand the possible reasons for the failure of the min-domain
heuristic and the success of the Nogood-triggered heuristic when used in asyn-
chronous backtracking [71, 72], consider the example in Figure 9.1. The agents
are ordered by their indices. Each agent has a single variable and three values,
a, b and c, in its domain. The eliminated values are crossed and each points
to its eliminating explanation (i.e. the assignment which caused its removal).
The circled values represent the current assignments. In this example, agent
A5 has exhausted its domain and must create a Nogood. The Nogood it
generates includes the assignments of A1 and A2 therefore the Nogood is
sent to A2. According to the rules of the ABT_DO algorithm agent A2 can
reorder agents A3, A4 and A5. Now, if it will reorder them according to their
current domain sizes then A3 and A4 will switch places. But, since both of the
values eliminated from the domain of A4 are in conflict with the assignment of
A3 then after they change places, these values will be returned to the domain
of A4 and its domain size will be larger than the domain of A3.

In contrast, if A2 reorders according to the Nogood-triggered heuristic then
the only agent to change places is A5 which is moved to be after A2 and before
A3. Now, after A2 replaces its assignment we get the situation in Figure 9.2.
We can see that an agent with a small domain was moved forward while the
others kept their domain sizes and places.

The example demonstrates why the min-domain heuristic fails when used
in asynchronous backtracking. In asynchronous backtracking, all agents hold
an assignment throughout the search. Conflicts with these assignments affect
the size of domains of other agents. For each value which is removed from an
agent’s domain an explanation Nogood is stored. When an agent is moved
in front of an agent whose assignment is included in one of its Nogoods, this
Nogood must be eliminated and the corresponding value is returned to the
domain. Thus, in contrast to sequential ordering algorithms, in asynchronous
backtracking the resulting domain sizes after reordering cannot be anticipated
by the ordering agent. The example demonstrates how this phenomena does
not affect the Nogood-triggered heuristic.

Following the example one can see that the Nogood-triggered heuristic
is successful because in many cases it moves an agent with a small domain

9.4 A new class of asynchronous heuristics 99

Fig. 9.1. Heuristics example - state before backtrack

to a higher position. Only values whose Nogood explanation includes the
assignment of the culprit agent are returned to the moving agent’s domain.
In fact, the agent can be moved up past the culprit, and as long as it does not
pass the second last assignment in the Nogood its domain size will stay the
same. In Figure 9.2, Agent A5 is moved right after agent A2. Its domain size
is one, since the Nogoods of its other two values are valid. If A5 is moved
before A2 its domain size will stay the same as both eliminating Nogoods
include only the assignment of A1. However, if A5 will be moved in front of
A1 then all its values will return to its domain. This possibility of moving an
agent with a small domain beyond the culprit agent to a higher position is
the basic motivation for retroactive ordering.

In contrast to the rules of ABT_DO (Section 9.2), the new type of order-
ing can change the order of agents with higher priority than the agent which
replaces its assignment. A retroactive heuristic would enable moving the No-
good sender to a higher position than the Nogood receiver [77]. In order
to preserve the correctness of the algorithm, agents must be allowed to store
Nogoods. In order to generate a general scheme for retroactive heuristics,

100 9 Asynchronous Ordering Heuristics

Fig. 9.2. After reordering and using the NG-triggered heuristic

one can define a global space limit for the storage of Nogoods. The specific
realization is to limit the storage of Nogoods that are smaller or equal to
some predefined size k.

The proposed ordering heuristic is triggered by the sending of a Nogood.
The reordering operation can be generated by either the Nogood generator
or by the Nogood receiver (but not by both). In contrast to [71, 72] (Sec-
tion 9.2), we choose the Nogood sender to be the one to reorder. The only
agent which can loose a relevant Nogood as a result of the reordering is
the Nogood sender (the only one moving to a higher position). Therefore,
since it is aware of its own state and the others do not loose information, the
Nogood sender is the best candidate for selecting the new order.
The new order is selected according to the following rules:

1. The Nogood generator can be moved to any position in the new order.
2. If the Nogood generator is moved to a position which is before the second

last in the Nogood (the one before the culprit) all the agents included in
the Nogood must hold the Nogood until the search is terminated.

9.4 A new class of asynchronous heuristics 101

3. Agents with lower priority than the Nogood receiver can change order
but not move in front of it (as in standard ABT_DO).

According to the above rules, agents which detect a dead end are moved to
a higher position in the priority order. If the length of the created Nogood is
larger than k, they can be moved up to the place that is right after the agent
which is the last to be included in the Nogood according to the current order
and is not the culprit (i.e. second last in the Nogood).

If the length of the created Nogood is smaller or equal to k, the sending
agent can be moved to a position before all the participants in the Nogood
and the Nogood is sent and saved by all of them. In the extreme case where
k is equal to the number of agents in the DisCSP (i.e. k = n), the Nogood
sender can always move to be first in the priority order and the resulting
algorithm is a generalization of AWC [61]. Note that the specific heuristic that
always moves the Nogood sender to the first position is the fixed heuristic
of the AWC algorithm (see Section 9.1) [77].

Algorithm 9.4 and Algorithm 9.5 present the code of Retroactive ABT_DO.
The difference from standard ABT_DO (Algorithm 9.2 and Algorithm 9.3)
in the code performed when a Nogood is received (Algorithm 9.4) derives
from the different possible types of Nogoods. A Nogood smaller or equal to
k is actually a constraint that will be stored by the agent until the search is
terminated. In the case of Nogoods which are longer than k, the algorithm
treats them as in standard ABT_DO i.e. accepts them only if the receiver
is the lowest priority agent in the Nogood and the Nogood is consistent
with the Agent_view and current_assignment of the receiver. In any case
of acceptance of a Nogood, the agent searches for a new assignment only if
it happens to be the lowest priority agent in the Nogood. As stated above,
only the Nogood generator is allowed to change order.

Procedure backtrack (Algorithm 9.5) is changed mainly in the code re-
lated to the retroactive heuristic version of ABT_DO. When an agent creates
a Nogood it determines whether it is larger than k or not. If it is larger, a
single Nogood is sent to the lowest priority agent in the Nogood in the same
way as in ABT_DO. Consequently, the agent selects a new order in which it
puts itself not higher than the second lowest priority agent in the Nogood.
When the Nogood is smaller or equal to k, if it is the first time this Nogood
is generated, the Nogood is sent to all the agents included in the Nogood
and the agent moves itself to an unlimited position in the new order. In this
case the function choose_new_order is called with no limitations. In both
cases, order messages are sent to all the lower priority agents in the new order.
The assignment of the lowest priority agent in the Nogood is removed from
the Agent_view, the relevant Nogoods are removed and the agent attempts
to re-assign its variable by calling check_agent_view.

Procedure check_agent_view (Algorithm 9.4) is slightly changed from
that of Algorithm 9.3 [72] since the change of order in the new scheme is
performed by the Nogood sender and not by its receiver.

102 9 Asynchronous Ordering Heuristics

Algorithm 9.4: The retroactive ABT_DO algorithm (main)
when received (ok?, (xj , dj) do:
1. add (xj , dj) to agent_view;
2. remove inconsistent nogoods;
3. check_agent_view;

when received (order, received_order) do:
1. if (received_order is more updated than Current_order)
2. Current_order ← received_order;
3. remove inconsistent nogoods;
4. check_agent_view;

when received (nogood, xj , nogood)
1. old_value← current_value
2. if (nogood contains an agent xk

with lower priority than xi and nogood.size > K)
3. send (nogood, (xi, nogood)) to xk;
4. else
5. if (nogood consistent with {Agent_view∪

current_assignment} or nogood.size ≤ K)
6. store nogood;
7. if (nogood contains an agent xk that is not its neighbor)
8. request xk to add xi as a neighbor;
9. add (xk, dk) to agent_view;
10 if(xi is with lowest priority in nogood)
11. check_agent_view;
12. if(old_value = current_value)
13. send (ok?, (xi, current_value)) to xj ;

9.5 Correctness of Retroactive ABT_DO

In order to prove the correctness of Retroactive ABT_DO we assume the
correctness of the standard ABT_DO algorithm (see proof in Section 9.3
and prove that the changes made for retroactive heuristics do not damage its
correctness. We first prove the case for no Nogood storage (k = 0):

Theorem 9.2. Retroactive ABT_DO is correct when k = 0.

There are two differences between standard ABT_DO and Retroactive
ABT_DO with k = 0. First, order is changed whenever a Nogood is sent
and not when an assignment is replaced. This change does not make a differ-
ence in the correctness since when a Nogood is sent there are two possible
outcomes. Either the Nogood receiver replaces its assignment, which makes
it effectively the same as in standard ABT_DO, or the Nogood is rejected.
A rejected Nogood can only be caused by a change of assignment either of
the receiving agent or of an agent with higher priority. In all of these cases, the

9.5 Correctness of Retroactive ABT_DO 103

Algorithm 9.5: The retroactive ABT_DO algorithm (secondpart)

procedure backtrack
1. nogood ← resolve_inconsistent_subset;
2. if (nogood is empty)
3. broadcast to other agents that there is no solution;
4. stop;
5. select (xj , dj) where xj has the lowest priority in nogood;
6. if(nogood.size > K)
7. Current_order ← choose_new_order()

where xl has the second lowest priority in nogood;
8. send (nogood, xi, nogood) to xj ;
9. else if(is_new(nogood))
10. new_position ← unlimited
11. send (nogood, xi, nogood) to all agents in nogood;
12. store sent nogood;
13. Current_order ← choose_new_order(xl)
14. send (order,Current_order) to lower priority agents;
15. remove (xj , dj) from agent_view;
16. remove all nogoods containing (xj , dj);
17. check_agent_view;

procedure check_agent_view
1. if(current_assignment is not consistent with all

higher priority assignments in Agent_view)
2. if(no value in Di is consistent with all higher priority

assignments in Agent_view)
3. backtrack;
4. else
5. select d ∈ Di where Agent_view and d are consistent;
6. current_value ← d;
7. send (ok?,(xi, d)) to neighbors;

most relevant order is determined lexicographically. Ties which could not have
been generated in standard ABT_DO, are broken using the agents indexes.

The second change in the code for k = 0 is that in Retroactive ABT_DO
a Nogood sender can move to a position in front of the agent that receives
the Nogood. Since the Nogood sender is the only agent moving to a higher
position, it is the only one that can lose a Nogood as a result. However, the
Nogood sender removes all Nogoods containing the assignment of the No-
good receiver and it does not pass any other agent contained in the Nogood.
Thus, no information is actually lost by this change. Moreover, the number of
times two agents can move in front of one another without a higher priority
agent changing its assignment is bounded by their domain sizes. �

104 9 Asynchronous Ordering Heuristics

Theorem 9.3. RetroactiveABT_DO is correct when n ≥ k > 0.

In order to prove that RetroactiveABT_DO is correct for the case that
n ≥ k > 0 we need to show that infinite loops cannot occur. In the case of
Nogoods which are smaller or equal to k the case is very simple. All agents
involved in the Nogood continue to hold it, therefore the same assignment can
never be produced again. The number of these Nogoods with a limited length
is finite. In finite time the algorithm reaches a state in which no permanent
Nogoods are added. In this state, agents do not move in front of the second
last in the Nogoods generated and the previous proof holds. �

10

Performance measures for distributed search

Standard CSP algorithms are routinely measured by the number of con-
straints checks they perform while searching for a solution [52, 56]. In contrast
to run time, this measure is implementation independent and is considered a
good performance measure [16, 56]. The main idea is that search algorithms
for a solution to a CSP traverse the search tree by constructing a solution
through a sequence of assignments. At each assignment the algorithm checks
for the validity of the current partial solution by accessing the constraints ma-
trix and checking the proposed new assignment against either existing assign-
ments or future unassigned variables (e.g., backtracking with or without looka-
head [31]). The performance measure of counting constraints checks (CCs) is
univerally accepted for standard CSP algorithms. It is desirable to have a
similar implementation-independent measure for distributed CSPs. However,
the first years of research have yielded only simple synchronous measures,
like the number of rounds of the simulator running the distributed algorithm
(cf. [61]). As was clear in our small running examples of algorithms like ABT
or ConcBT in Sections 5.1, 7.1, the division of a distributed run into steps
(e.g., rounds or cycles) is quite ad hoc. The present chapter will present a
framework for measuring the concurrent performance of all distributed search
algorithms. For DisCSPs the measure will use the concept of nonconcurrent
constraints checks, as presented below.

Distributed search algorithms on distributed constraints satisfaction prob-
lems (DisCSPs) are executed by a set of agents, where the sequence of com-
putations of one agent depends in general on the intermediate results of other
agents, as can be seen in Chapter 5, Chapter 6, and Chapter 7. The intermedi-
ate results of computations of agents are distributed by exchanging messages
between the agents. Usually, messages about assignments trigger the check-
ing of constraints against received assignments by the receiving agent. If the
check fails, the sending agent is requested to choose another assignment for
its variables (see, for example, Chapter 5).

Distributed search algorithms on DisCSPs assume implicitly that all
agents run the same algorithm, receiving messages about assignments of other

106 10 Performance measures for distributed search

agents and sending messages with their own assignments to other agents. As
we have seen, the majority of DisCSP algorithms are asynchronous and let
all agents perform computations (and report about their resulting assign-
ments) in a distributed manner. As a result, part of the constraint checks of a
distributed algorithm are performed concurrently, and the fraction of this part
(out of the total number of CCs) depends on the specific algorithm in question.
The concurrency of a DisCSP search algorithm transforms the performance
measurement of such algorithms into a nontrivial task.

Measurement of the computational efforts of an algorithm is mostly mo-
tivated by the need to estimate the time that will pass between the starting
time of the algorithm and the time it returns with a satisfying solution. Stan-
dard measures of constraints processing algorithms (cf. [52, 56]) count the
total number of constraints checks (CCs) that were executed. The number
of CCs performed is generally accepted as a machine (and implementation)
independent measure, because it counts the main computing operation of all
backtracking algorithms (cf. [31]). It is also the generally accepted measure
for the investigation of phase transitions in problem difficulty, for example (cf.
[33, 36, 65]). However, the simple counting of CCs is insufficient for DisCSPs
for two main reasons:

1. It does not take into account the time intervals in which agents run con-
currently and the time intervals in which agents wait for other agents to
finish their computations.

2. No account is taken of the time needed for an agent to send or receive a
message, nor of the time for the message to be delivered.

The waiting periods were probably the trigger for the first discussion in
the literature of how one can measure and compare the computational efforts
of DisCSP algorithms. Yokoo [62, 63] proposes to divide the time that the
algorithm consumes into rounds, where at the start of each round at least one
agent has the necessary information to carry on its computation. The divi-
sion of distributed computation into strict rounds is a simplification of the
dependency between computations of different agents. An example in Sec-
tion 10.3 demonstrates that this simplification generates an estimation of the
nonconcurrent search efforts that is not tight enough.

We will consider here a more general method of measurement, present
it in the form of a clear and general model, and present an algorithm for
computing the measure. The proposed methods rely explicitly on the depen-
dency among computations of agents and it is expected to generate a tighter
(better) performance measure for DisCSP algorithms. In the following sec-
tions the measurement problem is presented by analyzing a series of simple
examples of DisCSPs.

10.1 A Simple Example with Naive Methods 107

Fig. 10.1. A simple DisCSP

10.1 A Simple Example with Naive Methods

Consider the network in Figure 10.1 and assume agents run a search algorithm
that orders the agents lexicographically < A, B, C >. Assume the simplest
algorithm - each agent waits for the agents preceding it to assign their variable
before it assigns its own variable. Upon receiving a message with former agent
assignments, the agent attempts to assign values to its own variable, rejecting
values that are inconsistent with former agents. Assume that agents scan their
domain of values from left to right and after each assignment trial perform
constraints checks against former assignments of other agents. During the run
of this search algorithm, agents perform the following series of actions:

1. Agent A assigns the value 8 to its variable and sends messages with this
value to B and C.

2. Agent B receives a message from A with A′s assignment. It traverses the
values in its domain from left to right, checking each assignment against
the constraint with A. After performing nine constraints checks, B assigns
the value 9 to its variable and sends a message with this value to agent
C.

3. Agent C gets a message from A with value 8 (with no loss of generality we
assume that it receives this message almost simultaneously with B) and
after four constraint checks assigns the value 9 to its variable. Afterwards it
receives a message from agent B with the value 9 and after one additional
constraint check assigns the value 10 to its variable.

4. The first solution is found.

A simple time plot of this series of operations is presented in Figure 10.2.
Here the sequences of constraints checks (as a measurement unit for the search
computations) that each of the three agents performs during the above se-
quence is plotted as a horizontal segment.

108 10 Performance measures for distributed search

Fig. 10.2. Time plot of computations

One can measure the search effort of this algorithm by summing all con-
straints checks of all agents. This naive measurement method will result in 14
constraints checks. Another naive option is to take the maximal number of
constraints checks performed by any of these three agents (assuming they all
work concurrently); the result will be a total of nine constraints checks.

A close inspection of the time plot of the computation segments of the
agents in Figure 10.2 enables the following insight into this specific example.
In the current algorithm, agent B performs nine constraints checks. This com-
putation triggers the last computation sequence of agent C. In our example,
agent C can perform its first four constraints checks concurrently with agent
B. A reasonable estimation for the total computation time of this algorithm
(expressed in units of constraints checks), is the sum of nine of agent B plus
the final one of agent C, producing a result of 10 nonconcurrent constraints
checks altogether. In this simple example, none of the above naive measure-
ment methods (i.e., the sum of all CCs of all agents, or the maximum of all
CCs of all agents) can deliver this tight estimate.

10.2 Dividing concurrent search into rounds

Asynchronous search algorithms on DisCSPs can be viewed as a loop that
each agent is running: the agent receives a message, computes assignments
based on these messages, and then sends one or more messages, if needed. If
one adds an assumption that all messages are delivered instantly and in the
order they were sent, then the concurrent computation can be divided into
rounds. This is the model that was proposed by Yokoo [62, 63]. This model was
used for our simple demonstrating examples for DisCSP algorithms in Chap-
ter 5 and in Chapter 6. This division enables one to measure the computing

10.2 Dividing concurrent search into rounds 109

efforts of the search algorithm as a sum of the concurrent constraints checks
that are performed in each round. A natural measure of the concurrent con-
straints checks in each round is the maximum over all the agents for that
round.

The constraints checks performed by each agent in each round depend on
the assignments of a subset of the agents during the former round. Dividing
the computation of a distributed search algorithm for DisCSP into a series of
rounds is somewhat of a simplification. Any sequence of constraints checks of
agent may depend on the assignments of different agents in many ways.

If we apply the rounds model of Yokoo to our simple example in Figure 10.1
and Figure 10.2 we can see that in the first round only agent A can perform
its assignment. This round has zero constraints checks. In the second round
both agents B and C perform computations based on the message received
from agent A. Both agents search for an assignment that is consistent with
the assignment of agent A. In this, second round, agents B and C perform
nine and four constraints checks, respectively. Both of these computations are
done concurrently and therefore we take the maximum of nine CCs as the
computational cost of this round.

The third round of computations involves only agent C, which has to find
a consistent assignment to the new assignment of agent B. This needs only
one constraint check, so the cost of this round is 1.

The total number of nonconcurrent constraints checks (NCCCs) is the sum
of all NCCCs of all rounds of the computation, producing in our example the
final result of 0+9+1 = 10 nonconcurrent constraints checks. Note, that this
result is identical to our intuitive calculation in the former subsection.

The general idea behind the model of computing nonconcurrent constraints
checks in rounds is a notion of dependency. When we say that an event b de-
pends on an event a, we mean that event b cannot start before a
finishes. Dependency relations define parts of the computation of agents that
cannot be performed in parallel. For example, the search for an assignment
of agent C (in Figure 10.1) that is consistent with the assignment of agent
B must be performed sequentially to that of agent B. It is easy to see that
computing the search efforts by simply summing the CCs of all agents as-
sumes total dependency of computations of all different agents. The other
extreme approach, which take the maximum number of CCs performed by all
agents (over the whole search process), assumes total independence of all
agents. The model of rounds assumes that the dependent events are complete
rounds. We now turn to a more complex example of search over a DisCSP to
demonstrate that a refinement of the dependent events is needed.

110 10 Performance measures for distributed search

10.3 A More Complex Example for Computing NCCCs

Assume that the agents of the DisCSP in Figure 10.3 are ordered by <
A,D,B, E, C > and run the same algorithm as in the previous example. The
sequence of computations for this example will be as follows:

1. Agent A assigns the value 0 to its variable and sends messages with this
assignment to B and D.

2. Agent B gets the message from A and after 11 CCs assigns the value 0 to
its variable. Then it sends a message with this value to agent C.

3. Agent D gets the message from agent A and after six CCs it assigns the
value 0 to its variable. Next, it sends a message with this assignment to
agent E.

4. Agent C gets a message from agent B and after two CCs assigns the value
0 to its variable.

5. Agent E gets a message from agent D and after four CCs assigns the value
0 to its variable.

Fig. 10.3. A more complex example Fig. 10.4. Time plot of the more com-
plex example, in CCs

The time plot of computations of all agents for this example is shown in
Figure 10.4. Applying the rounds model of Yokoo, the computation is divided
into three rounds:

1. assignment of A: the computation effort here is 0 CCs.
2. assignment of B and D: here the concurrent computation effort is 11

NCCCs
max(B,D) = max(6, 11) = 11.

3. assignment of C and E: here four NCCCs are executed concurrently
max(C,E) = max(2, 4) = 4.

The total computational effort according to the rounds model is, therefore,
the sum of 0, 11, and 4, which amounts to 15 nonconcurrent constraints checks
(NCCCs). However, in this example agents B and C act independently of
agents D and E and vice versa. Inspecting the time plot in Figure 10.4, one
can see two separate branches of computations.

10.4 A Model for Nonconcurrent Constraints Checks 111

One branch consists of agents A,B,C and the other of A,D,E. The first
branch consumes 13 NCCCs and the second branch consumes 10. A good
measure of the concurrent computation effort is the maximum of these two
independent branches of computations. This more tight measurement results
in 13 NCCCs.

This example demonstrates that the division of computations by agents in
a distributed search algorithm into rigid rounds, is too simplistic. This chapter
describes a more general dependency definition for distributed constraints
processing algorithms and introduces an algorithm for computing the total
number of nonconcurrent constraints checks (NCCCs). The NCCC-computing
algorithm is proven to be a realization of the model definition.

10.4 A Model for Nonconcurrent Constraints Checks

The basic concept in our model is the sequence of constraint checks (SCC). An
SCC is a set of constraint checks executed by a single agent, in one sequence,
without sending or receiving any message during the execution of the sequence.
Using the SCC object as a building block, one can assemble them together
into a consistent model based on the dependency concept. The dependency
between SCC objects is generated by the sending and receiving of messages
among agents.

In the computing model for NCCCs, agent activities, while running a dis-
tributed search algorithm on a DisCSP, can be represented by two classes of
objects:

• The set of messages sent and received by an agent
• The set of all sequences of constraint checks (SCCs)

Definition 10.1. An event of an agent A is either sending a message, re-
ceiving a message, or performing a single SCC.

Definition 10.2. An event x of agent A is unary-dependent on event y of
the same agent if the event x occurs after event y and no event z of agent A
exists, such that z is after x and y is after z.

Definition 10.3. Event x of agent A is binary-dependent on event y of
agent B if the event y is the sending of some message M from B to A and x
is the event of receiving the message M , by agent A.

Definition 10.4. Event x is chain-dependent or dependent on event y if
one of the following three conditions holds:

• x is unary-dependent on y.
• x is binary-dependent on y.
• There is a sequence of events x1, ...xk, where x1 = y and xk = x, such

that for all i = 2 . . . k, xi is either unary-dependent or binary-dependent
on xi−1.

112 10 Performance measures for distributed search

Definition 10.5. For each SCC object x define a set of SCCs, the depen-
dency set Γ−(x) = {y1, y2, . . . , yn}, such that x is chain-dependent on any
yi ∈ Γ−(x) and Γ−(x) includes all SCC such that x is chain-depended on.

Next, we define the cost of computing, for a single SCC and for sets of
SCCs:

Definition 10.6. The S_Cost of SCC x is the number of constraints checks
that the agent performs during this SCC.

The cumulative cost (C_Cost) of an SCC x is defined recursively to be
the sum of costs of Γ−(x).

Definition 10.7. If an SCC x is not chain-dependent on any other SCC then

C_Cost(x) = S_Cost(x) (10.1)

otherwise,

C_Cost(x) = maxy ∈ Γ−(x)(C_Cost(y) + M_Cost) + S_Cost(x)) (10.2)

The term M_Cost that appears in definition 10.7 is the cost of message
transfer, in units of CCs. The total number of noncconcurrent constraints
checks (TCCC) can be calculated recursively by using the cumulative costs of
all SCCs. The TCCC, which represents the computing effort of a distributed
search algorithm, is the maximal cumulative cost C_Cost over the set of all
constraints checks sequences (SCCset). More formally:

Definition 10.8. The total number of nonconcurrent constraints checks that
a distributed algorithm performs during search is:

TCCC = maxx∈SCCset(C_Cost(x)) (10.3)

To make the model clear, let us apply it to the scenario described in Fig-
ures 10.3 and 10.4. The events of the application of the algorithm are described
in the form of a dependencies graph, defined on the set of events where (a, b)
is an edge of this graph if the event b is either unary-dependent or binary-
dependent on the event a. Each path in this graph is a dependencies path.
The resulting graph is shown in Figure 10.5, where black circles represent
SCCs and arrows connected dependent SCCs. Each message passing consists
of two events: sending and receiving of the message, but for simplicity we show
messages as atomic events. The SCC nodes of the dependencies graph in Fig-
ure 10.5 are labeled by triplets < Node, S_Cost,Dep_Agent >, where Node
is the ID of the agent, S_Cost is the cost (in CCs) of the SCC represented

10.5 The Cumulative Cost Algorithm (CCA) 113

Fig. 10.5. Dependencies graph for the example in Figure 10.3. Black circles repre-
sent SCCs

by this node, and Dep_Agent is the name of the agent that sent the message
that triggered this SCC.

The first event in this scenario is the zero-cost SCC performed by agent
A. It is easy to see that the cumulative costs of SCCs performed by agents
B, C,D,E are 11, 13, 6, 10, respectively, therefore the TCCC is 13, which is
equal to our intuitive estimation.

Note an important characteristic of the proposed model: event b depends
on event a iff the computation of event a must finish before the computation
of b starts. This partial temporal ordering of computations at different agents
serves as the basis for a realistic model of distributed computation. Each de-
pendency path includes a complete ordering of events and enables a simple
calculation of the total computation effort along each path. This model bears
a strong resemblance to time ordering, as proposed by Lamport in [32]. In
the next section we design an algorithm to compute the nonconcurrent con-
straints checks (NCCCs) measure on a run of a DisCSP search algorithm.
The algorithm uses the values of CC counters of agents to propagate the mea-
sure of concurrent constraints checks. It uses CC counter values in analogy to
Lamport’s concept of logical clocks [32].

10.5 The Cumulative Cost Algorithm (CCA)

Consider the dependencies graph in Figure 10.5. In order to calculate the
total number of concurrent constraints checks (TCCC) that represents the

114 10 Performance measures for distributed search

computation effort of the algorithm in the example, all possible paths to the
node with the final solution have to be followed. All edges in the dependencies
graph in Figure 10.5 represent messages among agents. Each message triggers
the computation that is represented by the cost of the SCC to which the edge
is leading.

The recursive definition of Equation 10.2, for the cumulative cost, can be
constructed on the fly during the computation of the DisCSP algorithm. To do
that, each agent has to maintain a counter of CCs. The counter represents the
agent view of the computation cost up to this point. This counter is updated
at the end of each SCC computation. Messages include, in addition to the
assignments of agents, the value of the counter of the sending agent. Since a
distributed search algorithm is typically asynchronous, many agents receive
messages that have different counter values written on them, corresponding to
several paths that lead to a node of a given agent on the dependencies graph.

The basic scheme of the proposed algorithm for calculating the total cu-
mulative cost is that each agent maintains a local counter of its view of
the C_Cost. In the next section these counters will be shown to be equal
to the C_Cost of the SCC node. We term these counters of the agents
AgentC_Cost. Each message that an agent sends includes the current value
of the AgentC_Cost of the sending agent. We term the counter value on the
message SenderC_Cost. Upon receiving a message and before performing
a sequence of constraints checks, the receiving agent updates its counter by
comparing it to the SenderC_Cost that is written on the received message.
After the agent performs the next SCC that this message triggered, the agent
updates its AgentC_Cost counter to include the constraints checks it just
performed in this SCC.

One way to understand the idea of the CCA algorithm is to think of it
in terms of achieving a total ordering of events, where events are of three
kinds - SCCs, sending messages, and receiving of messages. Our constraints
checks counters behave exactly like Lamport’s idealized (logical) clocks in [32].
They always increase in value for two events of the same agent. Following the
algorithm for clock synchronization [32], the agents in the CCA algorithm send
CC counter values that serve as time stamps. The result is a total ordering of
events, as proven in [32], and therefore a total count of NCCCs (as defined in
Section 10.4).

The target of the CCA algorithm is to return the computing cost of a given
DisCSP algorithm. In order to incorporate CCA into a DisCSP algorithm one
needs to perform the following steps:

• The first line of the agent’s code initializes AgentC_Cost to 0.
• After every constraint check performed by an agent, the AgentC_Cost

counter is increased by 1.
• All messages contain an additional field - SenderC_Cost.
• When an agent sends a message, it sets SenderC_Cost on the message

to the value of its AgentC_Cost.

10.6 Realization of the Model by the CCA Algorithm 115

Algorithm 10.1: Cumulative Cost Algorithm (CCA)
Each agent initializes its AgentC_Cost counter to 0.

When an agent sends a message it includes in the message the value
of its AgentC_Cost counter

After an agent performs any SCC it updates its AgentC_Cost
AgentC_Cost = AgentC_Cost + S_Cost

if(An agent receives a message with a counter SenderC_Cost)
if (SenderC_Cost + M_Cost > AgentC_Cost)
then AgentC_Cost = SenderC_Cost + M_Cost

M_Cost is the message transfer cost
if(a solution is found)

then Return the maximal AgentC_Cost over all agents

• When an agent receives a message with a SenderC_Cost counter value
plus transition cost larger than its own AgentC_Cost counter, it updates
its AgentC_Cost counter to the value of the SenderC_Cost + M_Cost.

Let us trace the behavior of the CCA on the example in Figures 10.3
and 10.4. Initially the counter of agent A is 0. Agent B receives a message
from A with counter 0, after performing an SCC it updates its counter to 11.
Agent C receives a message from B with counter 11 and then updates it to
13 as the result of the execution of its SCC. In the same way, the counters
of agents D and E will eventually be updated to 6 and 10, respectively. The
maximal counter value is 13 and this value will be returned as the TCCC of
the computation. The result of applying the CCA is equal to the result of
application of our model. The CCA algprithm returns the number of noncon-
current CCs (e.g., NCCCs) performed during the run of a distributed search
algorithm until it solves the DisCSP.

In the next section we prove this claim formally. The proof is given ex-
plicitly because counting NCCCs is computationally different than ordering
events in a distributed set of agents. Moreover, the CCA algorithm can include
in its cost calculation the cost of messages. In Chapter 12 the counting model
for NCCCs will be enhanced to deal with the simulation of message delays.

10.6 Realization of the Model by the CCA Algorithm

The goal of this section is to show that the inclusion of the CCA algorithm
in any distributed search algorithm for DisCSP will compute the TCCC as
defined by our model in Equation 10.3. This goal can be stated formally by
the following theorem:

116 10 Performance measures for distributed search

Theorem 10.6.1 Given that message transition cost M_Cost is zero for
all messages, the CCA algorithm returns the total computing effort TCCC, as
defined by Definition 10.8.

A few lemmas are needed for the proof of this theorem. Let SV be the
set of all the values of AgentC_Cost that was created during the run of the
DisCSP algorithm that implements the CCA algorithm. Next, divide SV into
equivalence classes by the use of the equality relation. Each value in the SV
set is produced by one of the following two operations:

Update by message: an agent updates its old AgentC_Cost value by some
larger SenderC_Cost value that it reads from a message.

SCC execution: the AgentC_Cost is updated immediately after the execu-
tion of an SCC sequence by adding the S_Cost to the current value of
the AgentC_Cost counter.

The value created by the Update by message method is not new. In other
words, at least one element of SV with the same value already exists in SV .
This is because every message shows an existing AgentC_Cost of some agent.
This observation is the essence of the first lemma.

Lemma 10.9. In every equivalence class of SV there exists at least one ele-
ment that was created by SCC execution of some agent.

Let V T be the set of messages causing the AgentC_Cost value of some
agent to be T . Let M be some message ∈ V T , passing from agent A to agent
A′. This implies that the AgentC_Cost value of A just before sending M was
T . This T value could be obtained in two ways: A got some message M ′ that
set its AgentC_Cost value to T , or A performed some SCC.

In the first case, the message M ′ also belongs to V T . For the second case,
observe an interesting fact: each message ∈ V T is either binary-dependent
on some other message that is also ∈ V T , or it is chain-dependent on some
SCC which means that the AgentC_Cost value of the sending agent is T .
Consider the graph of binary-dependencies induced by elements that are in
V T . This graph is a collection of DAGs. Therefore, there are messages of
V T that are independent of other messages of this set, and every message in
V T is either independent or dependent on some independent message. But,
by the fact observed above, every independent message in V T is dependent
on some SCC causing the AgentC_Cost value of the agent performing it to
be T . So, every message in V T is dependent on some such SCC. As can be
seen from Figure 10.6, this implies that if an agent starts some SCC and its
AgentC_Cost value is equal to T > 0 then this T value is the result of the
finishing value of another agent just after some SCC. More formally:

Lemma 10.10. If the AgentC_Cost value of agent A1, just before execution
of some SCC x is equal to T , and T > 0 then there exists at least one SCC y
performed by some agent A2 such that the AgentC_Cost value just after the
execution of y is equal to T and that SCC x is chain-dependent on SCC y.

10.6 Realization of the Model by the CCA Algorithm 117

Fig. 10.6. Dependency between two SCCs

Clearly, x depends on the event causing the AgentC_Cost value to be T .
This event is either the SCC y, or a message dependent on the SCC y, by the
discussion above. In both of these cases the lemma holds. �

Dependency of events implies order in time. This means for our case that
the path of dependencies in the dependencies graph is a growing series of
values of CCs. More formally:

Lemma 10.11. If SCC x1 of agent A1 depends on SCC x2 of agent A2 then
the AgentC_Cost value of A1 just before execution of x1 is not less then the
AgentC_Cost value of A2 just after the execution of x2.

The proof is straightforward. If x2 chain-depends on x1, then there is some
sequence of events E, where each event in the sequence E is either unary-
dependent or binary-dependent on its predecessor. The first event in E is the
execution of the SCC x1 and the last event in E is the execution of x2.

Let Ai be the agent initiating the i-th event in the sequence. Clearly, its
AgentC_Cost counter value will not be less then the counter value of Ai−1

after the occurrence of the i-1-th event. So, the counter of the agent initiating
the last event in the sequence, before the event will not be less than the
counter of the agent initiating the first event after its occurrence, by the
transitivity of the ≤ relation �

Every path in the dependencies graph is a growing series of values of CCs,
therefore the CCs value in each node is the largest value on this path up to this
node. Many dependencies paths may lead to the same node, and the above

118 10 Performance measures for distributed search

conclusion is true for all of these paths. The immediate conclusion is that the
CCs value at a mode is the maximal value over all the paths that leads to
that node. The next lemma states the above conclusion in exact terms and
shows that, if some AgentC_Cost value is created as the result of performing
some SCC, then this value is the cumulative cost C_Cost of this SCC.

Lemma 10.12. If a value of the counter AgentC_Cost = T of some agent
A is produced as the result of execution of some SCC x then T = C_Cost(x)
(as defined in Definition 10.7).

Proof: Let us assume that there are no SCCs of zero cost and reformulate the
lemma in the following way: if some agent A with current AgentC_Cost value
of T ′ performs an SCC x then its AgentC_Cost value T after performing x
is equal to C_Cost(x).

Because there is a finite number of possible values in SV for T ′, let us
apply induction on these values in increasing order. If T ′ = 0 then clearly x
does not depend on any other SCC because the dependency of x on any other
SCC y contradicts Lemma 10.11. The counter value of A after performing x
is equal to S_Cost(x), which is the same as C_Cost(x) for this case.

Otherwise, for T ′ > 0, assuming that the claim of the lemma holds for
all T ′ < Z (Z ∈ SV), we will show it holds also for the case T ′ = Z. By
Lemma 10.10 there is some SCC y performed by agent A′, where x depends
on y, and the value of A′ after performing y is T ′. Because the counter value of
A′ just before execution of y is less than T ′, T ′ = C_Cost(y) by the induction
assumption. From T = T ′ + S_Cost(x) we derive that T = C_Cost(y) +
S_Cost(x).

To show that T = C_Cost(x) we have to show that, among all SCCs
on which x is dependent, y is an SCC with the maximum cumulative cost.
Assume that this is not true and there is some SCC z of agent A′′ such that
x depends on and C_Cost(z) > C_Cost(y). Let T ′′ be the SCC z value
of agent A′′ after performing z. By Lemma 10.11 T ′′ ≤ T ′. Therefore, by
the induction assumption T ′′ = C_Cost(z). Consequently C_Cost(z) ≤ T ′

and C_Cost(z) ≤ C_Cost(y), which contradicts our assumption. Therefore
T = C_Cost(x). �

The proof of Theorem 10.6.1 is now immediate. By Lemma 10.12 all
AgentC_Cost values produced by SCCs are the C_Costs of these SCCs.
By Lemma 10.9 these values are representatives of SV . So, the set of all
C_Costs is equal to the set of all SV . Consequently, their maximal element
is also equal. �

Corollary 10.13. The claim of Theorem 10.6.1 holds also for messages which
have non-zero costs (e.g., finite delays, see Chapter 12).

Proof: To adapt the proof of Theorem 10.6.1 to non-zero cost messages,
S_Costs may include the cost of the message received by the agent performing

10.6 Realization of the Model by the CCA Algorithm 119

the SCC. In particular, for SCC x performed by agent A there may be two
cases:

• The predecessor of x with maximal C_Cost is performed by the same
agent. In this case the S_Cost(x) remains as is.

• The predecessor of x with maximal C_Cost is performed by another agent
B. In this case, we add to S_Cost(x) the massage cost from B to A.

The above rule hides non-zero message costs within the cost of the consecutive
SCC, and the cost of message sending itself remains zero. This way, both the
model and the proof of Theorem 10.6.1 remain valid. �

The model for the measurement of concurrent search effort on DisCSPs
is based on Lamport’s clock synchronization model. The model incorpo-
rates a dependencies graph among agents performing sequences of constraints
checks and exchanging messages. The proposed model measures search ef-
fort by counting nonconcurrent constraints checks (NCCCs) on the depen-
dencies graph. A simple algorithm for realizing the model within any dis-
tributed search algorithm, the cumulative cost algorithm (CCA), was defined
and proven to realize the model. The implementation of the CCA within a
DisCSP algorithm is very simple (see Algorithm 10.1).

The CCA algorithm can be implemented easily within a distributed al-
gorithm, without any need for strong assumptions on the order of arriving
messages and on instantaneous arrival of messages. In a realistic network of
agents, where messages can arrive in any order and delay the distributed
computation, the CCA is useful as it represents the actual computation.

By carrying counters within messages and updating counters by agents
according to the most delayed message counter, the CCA will measure the real
performance of the tested algorithm. It does not need any artificial division
of the run of a DisCSP algorithm into rounds. The actual computation paths
(sequences) among agents are measured and the costliest path is defined as
the global cost (in NCCCs) of the computation. The NCCCs model has three
main advantages:

• The definition of dependency among agents computations is realistic. Two
events are dependent in the model if and only if there is a real dependencies
path between these two events.

• The implementation of the model, in terms of the CCA, is very simple.
It does not need any simplification assumptions on the sequentiality of
a simulator, nor additional data structures. This advantage is important,
because the implementation of a distributed algorithm in a sequential en-
vironment is a nontrivial task.

• The CCA can be easily implemented within a real distributed system,
with concurrently running agents. Thus we compare a real, not simulated,
computational effort.

In the extensive empirical study of all DisCSP search algorithms that is
presented in Chapter 11 the run-time performance of all algorithms is mea-

120 10 Performance measures for distributed search

sured in NCCCs. Additional measures of distributed computing will also be
used in the empirical study, but NCCCs will be a central asynchronous mea-
sure which is implementation independent and specifically suitable for con-
straints search algorithms.

11

Experimental Evaluation of DisCSP Algorithms

The common approach to evaluating the performance of distributed algo-
rithms is to compare two independent measures of performance: time, in the
form of steps of computation [37, 61], and communication load, in the form
of the total number of messages sent [37]. Comparing the number of noncon-
current steps of computation of search algorithms on DisCSPs measures the
time of run of the algorithms.

In order to take into account the effort an agent makes during its local
assignment the computational effort can be measured by the number of con-
straints checks that agents perform. However, care must be taken to measure
the nonconcurrent constraints checks, in other words, count computational ef-
fort of concurrently running agents only once during each concurrent running
instance (see Chapter 10). Measuring the network load poses a much simpler
problem. Network load is generally measured by counting the total number of
messages sent during search [37].

Experiments with DisCSP search algorithms are standardly conducted on
randomly generated networks of constraints. This is similar to the centralized
CSP case [52, 56]. Random DisCSPs are characterized by n variables, k
values in each domain, a constraints density of p1, and tightness p2 (commonly
used in experimental evaluations of CSP algorithms, cf. [52, 56]). The density
of the constraints satisfaction problem is defined to be the probability of a
constraint among two variables. The tightness of constraints is the probability
for a pair of values to violate the constraint, among a constrained pair of
variables. All sets of experiments were conducted on networks with 10 to
20 agents (n=10-20) and 10 values for each variable (k = 10). To simplify
algorithm implementation, all agents have a single variable. Typical values of
the constraints density were used in different experiments and will be stated
in each case. In many cases a density of p1 = 0.4 was used to represent sparse
constraint networks and a density of p1 = 0.7 used for dense networks. The
tightness value p2 is varied in all experiments between 0.1 and 0.9 to cover all
ranges of problem difficulty. This is aimed to test all algorithms near the phase

122 11 Experimental Evaluation of DisCSP Algorithms

transition region where some problem instances are very difficult to solve (see
Section 2.3).

11.1 Comparing Different Algorithms

Chapter 5, Chapter 6, and Chapter 7 presented three different DisCSP search
algorithms. In addition, the simplest distributed constraints search algorithm
is synchronous backtracking (or synchronous backjumping), which was intro-
duced in Chapter 4. As we already mentioned, SBJ was found empirically
to outperform asynchronous backtracking when a good ordering heuristic is
used [11].

We turn now to an extensive empirical evaluation of the main DisCSP
search algorithms. First and foremost we will compare ABT to all other
algorithms. Since ABT is the fully asynchronous search algorithm, that is
expected to run completely concurrently, it is extremely interesting to com-
pare its performance with competitor algorithms that perform only part of
their potential computations concurrently. Consider first the asynchronous
forward-checking (AFC) algorithm. As described in Chapter 6, it performs
assignments sequentially. This is in contrast to ABT, in which agents perform
assignments concurrently and asynchronously. This will be our first compar-
ison (Section 11.1.1). The next comparison (in Section 11.1.2) will evaluate
the performance of ConcDB and compare it to ABT. The ConcDB algorithm
uses dynamic splitting of the search space to generate concurrent computation.
However, its search processes all perform assignments sequentially (see Chap-
ter 7). This makes the comparison in Section 11.1.2 of much interest.

In all of the empirical evaluations the ABT implementation used is the
“best possible”. It uses polynomial Nogood storage (e.g. Algorithm 5.2) and
agents read complete mailboxes. This form of ABT is a bit more complex
than the published pseudo-code versions in the literature. It needs code for
descarding irrelevant messages and for ordering the messages when reading
them from the agents’ mailboxes.

The next step of empirical evaluation of the various algorithms is to mea-
sure their performance in the presence of ordering heuristics. The case of
sequentially assigning algorithms, like AFC, is simple. Ordering heuristics
are simple to devise and to implement. For asynchronous ordering heuristics
the ABT_DO algorithm (Chapter 9) will be compared to standard ABT, for
two different heuristics.

11.1.1 Asynchronous forward-checking vs. ABT

The performance of AFC is compared to asynchronous backtracking (ABT)
as presented in Chapter 5. All Nogoods are resolved and stored as explana-
tions [9]. Based on Yokoo’s suggestions [63] the agents read, in every step, all
messages in their mailbox before performing computation.

11.1 Comparing Different Algorithms 123

(a) (b)

Fig. 11.1. (a) Number of nonconcurent constraints checks in AFC, and in ABT,
(b) total number of messages sent for both algorithms

Figure 11.1 presents a comparison of the computational effort performed
by AFC and ABT on randomly generated DisCSPs. The advantage in non-
concurrent constraints checks [Figure 11.1(a)] of AFC over ABT is quite large
- a factor of ten - for the hard problem instances. The communication load, as
measured by the total number of messages sent during search [Figure 11.1(b)],
is also lower for AFC than for ABT, by a factor of 3 at the peak (see [44]).

11.1.2 Experimental evaluation of ConcDB

To investigate the effect of concurrency, one needs to compare the performance
of concurrent search with and without splitting and dynamic splitting. To this
end, the simplest concurrent search algorithm, ConcBT , was run in a 1-CPA
version, 5-CPA version and a version which performs dynamic re-splitting
(using a step_limit of 35). The ConcBT algorithm is used in this set instead
of ConcDB to eliminate the effect of dynamic backtracking on the results.
The 1-CPA version is completely sequential and serves as the baseline for
comparison to the concurrent versions.

In the first set of experiments the density of the constraint networks is
p1 = 0.7. The value of the tightness, p2 was varied between 0.1 and 0.9, to
cover all range of problem difficulty. Results show averages over 50 runs.

Figure 11.2 shows the computational effort, the number of nonconcurrent
constraint checks, for all three versions of ConcBT . It is easy to see that
concurrency improves the search efficiency and that dynamic resplitting im-
proves it further. For the harder problem instances the improvement is by
a factor of 6 over the 1-CPA version and a factor of 3 over the 5-CPA ver-
sion. Figure 11.3 shows the results in total number of messages sent. Clearly,
the concurrent versions, either the 5-CPA version or the resplit one, circu-
late more CPAs in the network. However, the interesting result is that, even

124 11 Experimental Evaluation of DisCSP Algorithms

Fig. 11.2. Number of nonconcurrent constraint checks in different versions of
ConcBT

though ConcBT with dynamic splitting increases the number of traversing
CPAs during search, the effect on the total number of messages is negligible.
The dynamic splitting ConcBT does send more messages concurrently but
does so during a shorter period of time, resulting in a low amount of total
communication.

In order to evaluate the performance of concurrent dynamic backtracking
(ConcDB) it is compared to representatives of two families of algorithms. For
sequential assignment DisCSP algorithms we select both Conflict-based Back-
jumping (CBJ) [11, 68] and the AFC algorithm. The latter is an asynchronous
and concurrent algorithm that performs assignments sequentially (see Chap-
ter 6). CBJ is an improved version of synchronous backtracking [61], in which
agents process conflict sets in order to backtrack directly to the culprit agent.

The family of asynchronous assignments is represented by asynchronous
backtracking (ABT) [9, 61], again, the best version of ABT, reading whole
mailboxes and keeping a polynomial number of Nogoods (see Chapter 5).
This forms the best performing version of ABT.

Figure 11.4 presents the number of nonconcurrent constraint checks per-
formed by ConcDB, CBJ, AFC, and ABT on problems with low constraint
density (p1 = 0.4). For the harder problem instances, ConcDB outperforms

11.2 Empirical Evaluation of Heuristic Ordering 125

Fig. 11.3. Total number of messages sent in different versions of ConcBT

AFC by a factor of 1.5, ABT by a factor of 2.5 and CBJ by a factor of 3.
Figure 11.5 presents the total number of messages sent by the algorithms in
the same run. When it comes to network load the advantage of ConcDB over
ABT and AFC is larger (a factor of 4). As expected, the total network load
of the synchronous algorithm, which maintains a single message throughout
the search, is the smallest. Still, the total number of messages sent by CBJ
and ConcDB are very close.

11.2 Empirical Evaluation of Heuristic Ordering

Two sets of comparative experiments will be presented here. The first set
will deal with distributed heuristics for sequentially assigning algorithms, like
AFC. These heuristics were described in Sections 8.1, and 8.2. We will see that
such heuristics improve the performance of even the simplest DisCSP algo-
rithm to such an extent that it outperforms the best version of asynchronous
backtracking. This was first noted in [11] and extended to AFC in [44].

The second set of experiments will deal with asynchronous heuristics and
more specifically with the dynamically ordered ABT algorithm (ABT_DO).
Here, the interesting finding is that successful asynchronous heuristics are in

126 11 Experimental Evaluation of DisCSP Algorithms

Fig. 11.4. Number of nonconcurrent constraint checks performed by ConcDB, ABT,
and CBJ on low-density DisCSPs

general different from the centralized or sequential assignments versions. The
best heuristic is found to be a Nogood-triggered ordering heuristic that out-
performs the best version of static-ordered ABT by a large factor, especially
on hard problem instances [74].

11.2.1 Evaluation of synchronous ordering heuristics

Figure 11.6 presents the number of nonconcurrent constraints checks per-
formed by the AFC algorithm using different ordering heuristics on low den-
sity DisCSPs (p1 = 0.4). All three ordering heuristics improve the perfor-
mance of the statically ordered AFC. Figure 11.6 (b) presents a closer look
at the difference between the different heuristics, removing the static AFC
and scaling the heuristically ordered versions. The best performing heuris-
tic is the minimal domain size (Min_Domain) heuristic. AFC using the
Min_Domain heuristic performs half the NCCCs of AFC with the possible
conflict (PC) heuristic and a third of the AFC using the Nogood-triggered
(NG) heuristic (see Chapter 8). Figure 11.7 presents similar results for the
measure of network load.

11.2 Empirical Evaluation of Heuristic Ordering 127

Fig. 11.5. Total number of messages sent by ConcDB, ABT, and CBJ on low-
density DisCSPs

(a) (b)

Fig. 11.6. (a) Nonconcurent constraints checks with different heuristics of AFC.
(b) Just the three ordering heuristics

128 11 Experimental Evaluation of DisCSP Algorithms

Fig. 11.7. Total number of messages sent by AFC with different ordering heuristics
vs. static order (p1 = 0.4)

The fact that the ratio of improvement of AFC over ABT grows with prob-
lem difficulty can be explained intuitively. Problem difficulty is known to be
correlated with the number of solutions on random constraint networks [56].
Fewer solutions mean that a larger fraction of all partial assignments will fail.
In asynchronous backtracking, each such “due to fail” assignment generates
messages to multiple agents and triggers their further assignments and mes-
sage passing. The above experiments demonstrate that when there are fewer
solutions it is more efficient to generate consistent partial assignments, as in
the AFC algorithm.

11.2.2 Evaluation of dynamically ordered ABT

All three sets of experiments for evaluating the performance of dynamically
ordered ABT (ABT_DO) were conducted on networks with 20 agents (n =
20) each holding exactly one variable, 10 values for each variable (k = 10) and
two values of constraints density p1 = 0.4 and p1 = 0.7. The tightness value
p2 is varied between 0.1 and 0.9 to cover all ranges of problem difficulty. For
each pair of fixed density and tightness (p1, p2) 50 different random problems
were solved by each algorithm and the results presented are an average of
these 50 runs.

ABT_DO is compared to the run of standard ABT. For ordering variables
in ABT_DO three different heuristics were used:

11.2 Empirical Evaluation of Heuristic Ordering 129

1. Random: each time an agent changes its assignment it randomly orders
all agents with lower priorities in its Current_order.

2. Domain-size: this heuristic is inspired by the heuristics used for sequen-
tial assigning algorithms in [11]. Domain sizes are calculated based on the
fact that each agent that performs an assignment includes its current do-
main size in the order message sent to all other agents. Every agent that
replaces an assignment orders the lower priority agents according to their
domain size from the smallest to the largest.

3. Nogood-triggered: agents change the order of the lower priority agents
only when they receive a Nogood which eliminates their current assign-
ment. In this case the agent moves the sender of the Nogood in front of
all other lower priority agents. This heuristic was first used for dynamic
backtracking in centralized CSPs by [23].

Fig. 11.8. Nonconcurrent constraints checks performed by ABT and ABT_DO
using different ordering heuristics on low density DisCSPs (p1 = 0.4).

Figure 11.8 presents the computational effort in number of nonconcurrent
constraints checks to find a solution, performed by ABT and ABT_DO using
the above three heuristics. The algorithms solve low-density DisCSPs with a
density of p1 = 0.4. ABT_DO with random ordering slightly improves the
results of standard ABT. ABT_DO that uses domain sizes to order the lower
priority agents performs slightly better than the random version. The largest
improvement is gained by using the Nogood-triggered heuristic. For the hardest

130 11 Experimental Evaluation of DisCSP Algorithms

Fig. 11.9. Number of messages sent by ABT and ABT_DO on low density
DisCSPs (p1 = 0.4).

DisCSP instances, ABT_DO with the Nogood-triggered heuristic improves
the performance of standard ABT by a factor of 4.

Figure 11.9 presents the total number of messages sent by the algorithms
for the same problems. While ABT_DO with the random ordering heuristic
shows a small improvement in the run time results over standard ABT, it
sends more messages. This can be expected since in ABT_DO agents send
additional order messages and ok? messages to all their neighbors while in
standard ABT, ok? messages are sent only to lower priority agents (see Chap-
ter 5 and Chapter 9). ABT_DO with domain size ordering sends more mes-
sages than standard ABT but fewer than the random ordering version. The
really interesting result is that ABT_DO with the Nogood-triggered heuris-
tic sends fewer messages than ABT. Counting the additional ok? messages
(sent to higher priority agents) and the order messages, it still sends fewer
messages than standard ABT on the hardest DisCSP instances.

In AFC agents assign their variables sequentially and perform consis-
tency checks against the current partial assignment concurrently. Although
the heuristics used by AFC are the same heuristics used by ABT_DO, the re-
sults are very different. All dynamic ordering heuristics used by AFC improve
the run of static order AFC. The best heuristic is the min-domain heuristic
(see Section 11.2.1). It is interesting to try and understand the difference be-
tween the behavior of asynchronous backtracking with dynamic ordering and

11.2 Empirical Evaluation of Heuristic Ordering 131

that of sequential assignment DisCSP algorithms like asynchronous forward
checking (AFC).

To achieve some understanding one needs to remember that agents in asyn-
chronous backtracking constantly and asynchronously perform assignments
against their current view of the system. The state of the system viewed by
an agent includes its values, pruned by either Nogoods or some current as-
signments of higher priority agents. In standard ABT a Nogood is discarded
and its corresponding value is returned to the agent’s current domain only
when higher priority agents replace their assignments. In dynamic ordered
ABT, Nogoods can be discarded due to a change of order even if the assign-
ments included in the Nogood are not changed. Consider an agent Ai that
holds a Nogood ng which includes the assignment of a higher priority agent
Aj . If agent Aj is moved to a lower priority than Ai, ng is no longer valid
since values are discarded only when they conflict with assignments of higher
priority agents.

Fig. 11.10. Number of removed Nogoods as a result of order changes by ABT_DO
(p1 = 0.4)

Another look at the tested heuristics with the above insight in mind re-
veals that both the random heuristic and the min-domain heuristic do not
take this property into consideration and that reordering agents according to
them may cause the loss of valid Nogoods. In contrast, ABT_DO with the
Nogood-triggered heuristic rarely removes Nogoods due to changes of order.
In ABT, an agent sends a Nogood to the lowest priority agent among the

132 11 Experimental Evaluation of DisCSP Algorithms

higher priority agents whose assignment is included in one of its Nogoods
(Chapter 5 [9]). This means that, if an agent Ai is moved by agent Aj to a
place immediately following Aj , all the assignments of agents that were pre-
viously ordered between Ai and Aj are removed from Ai’s Nogoods. Since
these assignments were not involved in the Nogood, all of Ai’s previous No-
goods are still valid.

Figure 11.10 presents the total number of Nogoods removed by ABT_DO,
as a result of order changes. The Nogood-triggered heuristic looses a very small
number of Nogoods as a result of order changes. The number of Nogoods
removed by the random and the min-domain heuristic is much larger.

Fig. 11.11. Nonconcurrent constraints checks performed by different versions of the
ABT_DO ordering heuristics (p1 = 0.4)

In sequential assignment algorithms only the next variable to be assigned is
selected by the heuristic. In ABT_DO all unassigned agents can be reordered.
Figure 11.11 presents a comparison between two versions of the random and
the min-domain heuristics. Each heuristic was performed in two different ver-
sions. In one, after each assignment all lower priority agents are reordered
according to the heuristic, in the other only the agent which will have the
highest priority among the lower priority agents is selected by the heuris-
tic and the other agents keep their places from the previous heuristic (these
heuristics are called single in the figures). The results are clearly in favor of the
single version of the heuristics. Figure 11.12 presents a possible explanation
for these results. It is clear that the single versions of the heuristics remove

11.2 Empirical Evaluation of Heuristic Ordering 133

Fig. 11.12. Total number of Nogoods that are removed as a result of order changes
by ABT_DO with different versions of ordering heuristics (p1 = 0.4)

fewer Nogoods due to order changes than the heuristics that order all of the
lower priority agents.

11.2.3 Retroactive ordering for ABT

The limited (parametrized) storage of Nogoods of the retroactive ordered
version of ABT_DO (Section 9.4) can be used to test several heuristic ideas.
One aspect is to check the dependency of the performance on the size of the
current domain of the moved agents. To this end one uses a retroactive heuris-
tic in which agents are not allocated any additional Nogood storage. Agents
include in their messages the size of their current domains. This information is
stored in the agent’s Agent_views. A Nogood generator moves itself to be in
a higher position than the culprit agent but it moves in front of an agent only
if its current domain is smaller than the domain of that agent. Otherwise, it
places itself right after the culprit agent as in standard ABT_DO.

The left-hand side (LHS) of Figure 11.13 presents the results in NCCCs for
ABT_DO and Retroactive ABT_DO with the above heuristic. The retroac-
tive version of ABT_DO (depicted in the figures as min-domain) improves
the run-time performance of ABT_DO (depicted as ABT_DO_NG). In or-
der to emphasize the relation to the Min-Domain property, a third line in
Figure 11.13 represents retroactive ABT_DO without checking the domain
sizes (depicted in the figures as After Second Last). This version of retroactive

134 11 Experimental Evaluation of DisCSP Algorithms

Fig. 11.13. Nonconcurrent constraint checks performed and messages sent by
Retroactive ABT_DO and by ABT_DO on low-density DisCSPs (p1 = 0.4)

ABT_DO was the slowest among the three. Similar results for the number
of messages sent are presented on the right-hand side (RHS) of Figure 11.13.
In the case of network load, both versions of Retroactive ABT_DO send less
messages than standard ABT_DO.

In order to further demonstrate the dependency of the domain size of
agents on the success of the selected heuristic, an additional experiment was
performed. Here, the size limit for keeping Nogoods is varied1. A Nogood
generator which created a Nogood of length larger than k places itself right
after the Nogood receiver as in standard ABT_DO. When the Nogood
generator creates a Nogood smaller or equal to k, it places itself first in the
priority order and sends the generated Nogood to all the participating agents.
In the case of k = n the resulting algorithm is exactly AWC. In the case of
k = 0 the resulting algorithm is standard ABT_DO. The LHS of Figure 11.14
presents the number of NCCCs performed by the algorithm with k equal to
0, 1, 3 and n (n = 15). The results show similar performance when k is small.
The performance of the algorithm deteriorates when k = 3 and the slowest
performance is when k = n. Similar results for the total number of messages
sent are presented on the RHS of Figure 11.14.

The fact that a larger storage which enables more flexibility of the heuristic
actually causes a deterioration of the performance might come as a surprise.
However, one must examine the effect of the specific heuristic used on the size
of the domains of the agents which are moved up in the order of priorities.
An agent creates a Nogood when its domain empties. After sending the
Nogood it removes the assignment of the culprit agent from its Agent_view
and returns to the domain only values whose eliminating Nogood included
the removed assignment. When the agent is moved in front of other agents

1 In this experiment the problems were smaller (n = 15) since the algorithms run
slower.

11.2 Empirical Evaluation of Heuristic Ordering 135

Fig. 11.14. Non concurrent constraint checks performed and messages sent by
Retroactive ABT_DO with different limits on Nogood size (p1 = 0.4)

whose assignments were included in the generated Nogood it must return
more values to its domain. These are the values whose explanation Nogood
included the assignment of the agent which was passed. This of course does
not happen for the case of a Nogood of size one and that is why for k = 1 we
get better results. Thus, moving an agent as high as possible in the priority
order actually results in moving upwards an agent with a larger domain.

The experiments demonstrate a clear relation between the heuristics and
the Min-Domain property of the generated search tree. A well known fact
from centralized CSP algorithms [16, 26] and from DisCSP algorithms with
a sequential assignment protocol [11] is that the Min-Domain heuristic is very
powerful on randomly generated problems. It is clear in the experiments that
in most cases the Nogood-triggered heuristic of [71] moves to higher priority
agents with smaller domains. This is because an agent whose domain was
exhausted returns to its domain, after sending the Nogood, only the values
in conflict with the assignment of the culprit agent. Thus, only a small number
of values are returned to its domain. It is not surprising that this heuristic
was found to be very successful [71, 72]. On the other hand, when an agent is
moved to a higher position than the agents in the Nogood it discovered, it
must return additional values to its domain. This contradicts the properties
of the min-domain heuristic and was found to perform poorly in practice. The
case of k = 1 did show an improvement since the last assignment in a detected
Nogood is always removed from the Agent_view of the agent which found
the Nogood.

In the best performing heuristic, agents are moved higher in the priority
order as long as their domain size is smaller than the domains of the agents
before them and as long as they do not pass the second last in the Nogood
they have generated, which would result in returning more values to their
domain. Since the agent moving to a higher position is not in conflict with
the assignments of agents it has moved in front of, its move will not cause
the loss of Nogoods and therefore the information it holds on the size of

136 11 Experimental Evaluation of DisCSP Algorithms

the current domains of these agents remains valid. The retroactive ordering
version has improved the results of [71, 72] by a factor of 2.

12

The Impact of Communication - Message Delays

The standard model of Distributed Constraints Satisfaction Problems has
agents that are autonomous asynchronous entities. The actions of agents are
triggered by messages that are passed among them. In real-world systems,
messages do not arrive instantaneously but are delayed due to network prop-
erties. Delays can vary from network to network (or with time, in a single
network) due to networks topologies, different hardware, and different proto-
cols used. In order to investigate the impact of message delays on DisCSP
algorithms, two essential requirements have to be satisfied:

• Means of controlling the amount and type of delays in the experimental
set up.

• A common scale for message delays and the performance measures of dis-
tributed search algorithms.

The first study of the impact of message delays on DisCSP algorithms
used randomly generated delays that were measured in real time of runs [19].
The results indicated a strong deterioration in the performance of ABT with
random message delays. However, the scale of delays in [4, 19] dictated the
measurement of performance in real time. While this is acceptable, it is highly
implementation dependent. As explained in Chapter 11, the performance of
distributed algorithms is measured by two standard means that are implemen-
tation independent. To achieve such measurement for distributed and concur-
rent algorithms, one must use a well-controlled environment in the form of a
simulator. To simulate asynchronous agents, the simulator implements agents
as Java Threads. Threads (agents) run asynchronously, exchanging messages
by using a common mailer. After the algorithm is initiated, agents block on
incoming message queues and become active when messages are received. The
Mailer can simulate message delays, but, needs to be controlled by an algo-
rithm that takes into account the concurrent time-keeping of the asynchronous
system.

Concurrent steps of computation, in systems with no message delay, are
counted by a method similar to that of [32, 45, 53]. As described in Chapter 10,

138 12 The Impact of Communication - Message Delays

every agent holds a counter of computation steps. Every message carries the
value of the sending agent’s counter. When an agent receives a message it
updates its counter to the largest of its own counter and the counter value
carried by the message. By reporting the cost of the search as the largest
counter held by any agent at the end of the search, we achieve a measure of
concurrent search effort that is similar to Lamport’s logical time [32]. These
concurrent counters that are stamped on all messages and, passed around, can
serve the Mailer in monitoring system time and controlling message delays.

In systems with message delays, the measurement of concurrent run time
(in the form of nonconcuurent constraints checks, NCCCs) is more complex.
For the simplest possible algorithm, Synchronous Backtrack (SBT), the effect
of message delay is very clear. The number of computation steps is not affected
by message delays and the delay in every step of computation is the delay
on the message that triggered it. Therefore, the total time of the algorithm
run can be calculated as the total computation time plus the total delay
time of messages. In the presence of concurrent computation, the time of
message delays must be added to the total run time of the algorithm only if no
computation was performed concurrently. To achieve this goal, the algorithm of
the Asynchronous Message-Delay Simulator (AMDS) counts message delays
in terms of computation steps and adds them to the accumulated run time
when no computation is performed concurrently [72, 73].

In order to simulate message delays, all messages are passed by a dedi-
cated Mailer thread. The mailer holds a counter of concurrent computation
steps performed by agents in the system. This counter represents the logical
time of the system and we refer to it as the Logical Time Counter (LTC).
Every message delivered by the mailer to an agent carries the LTC value of
its delivery to the receiving agent. To compute the logical time that includes
message delays agents perform a similar computation to the one used when
there are no message delays [45]. An agent that receives a message updates
its own LTC to the larger of its own and the LTC on the message received.
Then the agent performs the computation step, and sends its outgoing mes-
sages with the value of its LTC incremented by 1. The same mechanism can
be used for computing the nonconcurrent computational effort, by counting
nonconcurrent constraints checks. Agents add to the counter values in outgo-
ing messages the number of constraints checks performed in the current step
of computation.

The mailer simulates message delays in terms of concurrent computation
steps. To do so it uses its own (global) LTC. When the mailer receives a
message, it first checks if the LTC value that is carried by the message is larger
than its own value. If so, it increments the value of the LTC. This generates
the value of the global clock (of the Mailer) which is the largest of all the
logical times of all agents. Next, a delay for the message (in number of steps)
is selected. Different types of selection mechanisms can be used, from fixed
delays, through random delays, to delays that depend on the actual load of the
communication network [72]. To achieve delays that simulate dependency on

12.1 Simulating Delayed Messages on DisCSPs 139

network load, for example, one can assign message delays that are proportional
to the size of the outgoing message queue.

12.1 Simulating Delayed Messages on DisCSPs

Algorithm 12.1: The Mailer algorithm
• upon receiving message msg:

1. LTC ← max(LTC, msg.LTC)
2. delay ← choose_delay
3. msg.delivery_time ← msg.LTC + delay
4. outgoing_queue.add(msg)
5. deliver_messages

• when there are no incoming messages and all agents are idle
1. LTC ← outgoing_queue.first_msg.LTC
2. deliver_messages

• deliver_messages
1. foreach (message m in outgoing queue)
2. if (m.delivery_time ≤ LTC)
3. deliver(m)

Let us go over the details of the Mailer algorithm in Algorithm 12.1, in
order to understand the measurements performed by the simulator during run
time. When the mailer receives a message, it first checks if the LTC value that
is carried by the message is larger than its own value. If so, it increments the
value of the LTC (line 1). In line 2 a delay for the message (in number of
steps) is selected. Here, different types of selection mechanisms can be used,
as mentioned above.

Each message is assigned a delivery_time which is the sum of the value
of the message’s LTC and the selected delay (in steps), and placed in the
outgoing_queue (lines 3,4). The outgoing_queue is a priority queue in which
the messages are sorted by delivery_time, so that the first message is the
message with the lowest delivery_time. In order to preserve the assumption
about ABT, that two messages between the same pair of agents must arrive
in the same order they were sent, messages from agent Ai to agent Aj cannot
be placed in the outgoing queue before messages which are already in the
outgoing queue which were also sent from Ai to Aj . This property is essential
to asynchronous backtracking, which is not correct without it (cf. [9]). The
last line of the Mailer’s code calls method deliver_messages, which delivers
all messages with delivery_time less or equal to the mailer’s current LTC
value to their destination agents.

When there are no incoming messages, and all agents are idle, if the
outgoing_queue is not empty (otherwise the system is idle and a solution

140 12 The Impact of Communication - Message Delays

has been found) the mailer increases the value of the LTC to the value
of the delivery_time of the first message in the outgoing queue and calls
deliver_messages. This is a crucial step of the simulation algorithm. Con-
sider the run of a synchronous search algorithm. For synchronous backtracking
(SBT) [61], every delay needs the mechanism of updating the Mailer’s LTC
(line 1 of the second function of the code in Algorithm 12.1). This is because
only one agent is computing at any given instance, in synchronous backtrack
search.

The nonconcurrent run time reported by the algorithm is the largest LTC
value that is held by any agent at the end of the algorithm’s run. By incre-
menting the LTC only when messages carry LTCs with values larger than the
mailer’s LTC value, steps that were performed concurrently are not counted
twice. This is an extension of Lamport’s logical clocks algorithm [32], as pro-
posed for DisCSPs by [45], and extended here for message delays.

A similar description holds for evaluating the algorithm run in nonconcur-
rent constraints checks. In this case the agents need to extend the value of
their LTCs by the number of constraints checks they actually performed in
each step. This enables a concurrent performance measure that incorporates
the computational cost of the local step, which might be different in different
algorithms. It also enables to evaluate algorithms in which agents perform
computation which is not triggered or followed by a message.

12.1.1 Adjusting the measuring method for dynamic ordering

In asynchronous backtracking with dynamic agent ordering [74] as in the
asynchronous weak commitment (AWC) search algorithm, agents hold in their
Agent_Views assignments of both higher and lower priority agents. The agents
check their current assignment only against assignments of agents with higher
priority according to the current order. However, since the priority order is
dynamic, an assignment of a lower priority agent which is currently irrel-
evant may become relevant as a result of a change in the order of priori-
ties, thus such lower priority assignments are not discarded from the agent’s
Agent_View. The agents performing asynchronous backtracking with dynamic
ordering (ABT_DO) or asynchronous weak commitment (AWC), send their
assignments to all their neighbors (and not only to their current lower priority
neighbors) for the same reason [61, 74].

Messages which carry the assignments of lower priority agents to higher
priority agents do not trigger immediate computation since the assignment in
the received message cannot rule out the local assignment even if they are in
conflict.

A small change in the agents actions would adjust the measuring method
of AMDS presented above for counting nonconcurrent logic steps to deal
with messages which do not trigger immediate computation, and their data
is stored for later use. In order to preserve the concept of nonconcurrent logic
steps, for every message received, before updating the local logic time counter

12.2 Validity of AMDS 141

(LTC) the agent must make sure that the computation performed in order
to produce the data carried by the message could not have been performed
concurrently with the steps of computation it is about to perform. Another
way to look at this is to ask if the computation steps about to be performed
could have been performed if the message carrying the corresponding data
was delayed. This can be done by the agents by delaying the update of their
LTC in cases where the received LTC is larger. Instead the agents store the
data in the message receive together with the corresponding LTC. When the
stored data is first used for computation, the corresponding LTC is compared
with the local LTC and the last is updated with the largest of the two.

12.2 Validity of AMDS

The validity of the proposed simulation algorithm can be established in two
steps. First, its correspondence to runs of a synchronous (cycle-counting) sim-
ulator is presented. Understanding the nature of this correspondence, enables
one to show that a corresponding synchronous cycle simulator cannot measure
concurrent delayed steps and the AMDS is necessary.

In a synchronous cycle simulator (SCS) [61], each agent can read all mes-
sages that were sent to it in the previous cycle and perform a single compu-
tation step. The computation is followed by the sending of messages (which
will be received in the next cycle). Agents can be idle in some cycles, if they
do not receive a message which triggers a computation step. The cost of the
algorithm run is the number of synchronous cycles performed until a solution
is found or a nonsolution is declared (see [61]). Message delay can be simu-
lated in such a synchronous simulator by delivering messages to agents several
cycles after they were sent. Our first step is to show the correspondence of
AMDS and an SCS.

Theorem 12.1. Any run of AMDS can be simulated by a synchronous cycle
simulator (SCS). Each cycle ci of the SCS corresponds to an LTC value of
AMDS.

Proof. Every message m sent by an agent Ai to agent Aj , using the AMDS,
can be assigned a value d which is the largest value between the LTC carried
by m in the AMDS run and the value of the LTC held by Aj when it receives
m. Running a synchronous cycle simulator (SCS) and assigning each message
m with the value d calculated as described above, the message can be delivered
to Aj in cycle d. The outcome of this special SCS is that every agent in
every cycle ci receives the same messages as the agents in the corresponding
AMDS and the histories of all these messages are equivalent. This means
that agents have the same knowledge about the other agents as the agents
performing the corresponding steps in the AMDS run. Assuming that the
algorithm is deterministic, each agent will perform the same computation and

142 12 The Impact of Communication - Message Delays

send the same messages. If the algorithm includes random choices the run can
be simulated by recording AMDS choices and forcing the same choice in the
synchronous simulator run. �

This theorem demonstrates that, for measuring the number of steps of
computation, the asynchronous simulator is equivalent to a standard SCS
that does not wait for all agents to complete their computation in a given
cycle, in order to move to the next cycle. Message delays are simulated simply
by the SCS delivering messages in delayed cycles.

The validity and importance of the asynchronous simulator can now be
understood. Consider the important case where computational effort needs
to be measured, in terms of constraints checks for example. At each cycle
agents perform different amounts of computation, depending on the algorithm,
the arrival of messages, etc. The SCS has no way to guess the amount of
computation performed by each agent in any given step or cycle. It therefore
cannot deliver the resulting message in the correct cycle (one that matches the
correct amount of computation and waiting). The natural way to incorporate
the computational cost into the performance measure is to clock the simulator
by CCs (for example). But this is equivalent to using the AMDS as proposed
in section 12.1.

The AMDS presented in Section 12.1 enables a deeper exploration of the
behavior of different search algorithms for DisCSPs on systems with different
message delays. Message delays emphasize the properties of families of algo-
rithms which are not apparent when the algorithms are run in a system with
perfect communication. Experimental evidence for such behavior was found
recently for asynchronous backtracking algorithms [4, 54].

13

Message Delays and DisCSP Search Algorithms

The behavior of distributed search algorithms on DisCSPs can be studied
on a set of three very different families of DisCSP algorithms. All search
algorithms on DisCSPs can be divided into two families: single search pro-
cess algorithms (SPAs) and concurrent (multiple) search process algorithms
(CSAs). The only former experimental study of the performance of DisCSP
algorithms compared two asynchronous single search algorithms [4].

The state of single process algorithms is defined by a single tuple of as-
signments, one for each agent. When this set of assignments is complete (con-
taining assignments to all variables of all agents) and consistent, the SPA
stops and reports a solution. A simple representation for the state of any
synchronous SPA, like SBT [61] or CBJ [68], is a data structure that holds
the current partial assignment of the search (CPA). Single search process al-
gorithms can be asynchronous. In asynchronous backtracking (ABT) [9, 61],
each agent holds its view of the current assignments of other agents in a sin-
gle Agent_V iew (Chapter 5). When all agents are idle, all Agent_V iews are
consistent and a solution is reported [9, 61].

In concurrent search, multiple concurrent processes perform search on non-
intersecting parts of the global search space of a DisCSP ([25, 55, 67]). All
agents in a CSA participate in every search process, since each agent holds
some variables of the search space. Each agent holds the current domains
of its variables, for each of the search processes. Messages of CSAs carry
the IDs of their related search process and the agents use the correspond-
ing current domains for consistent assignments. The concurrent backtracking
algorithm (ConcBT), distributes among agents a dynamically changing num-
ber of search processes [75] (see Chapter 7). Agents generate and terminate
search processes dynamically during the run of the ConcBT algorithm. The
concurrent dynamic backtracking (ConcDB) algorithm incorporates dynamic
backtracking to the concurrent performing search processes. As a result, one
search procedure can reveal a dead end of another concurrent search procedure
and terminate it [75].

144 13 Message Delays and DisCSP Search Algorithms

In interleaved asynchronous backtracking, agents participate in multi-
ple processes of asynchronous backtracking. Each agent keeps a separate
Agent_V iew for each search process in IDIBT [25]. The number of search
processes is fixed by the first agent. The performance of concurrent asyn-
chronous backtracking [25, 55] was tested and found to be ineffective for more
than two concurrent search processes [25].

The general model of DisCSPs has variables owned by agents, who as-
sign them values. The distinction between the two families of algorithms is
in the number of concurrent assignments that agents maintain. In SPAs each
agent can have no more than one assignment to its variable at any single
instance. In multiple process algorithms (MPAs), on the other hand, agents
maintain multiple concurrent assignments to their variable. To give an ex-
ample, synchronous backtracking (SBT) is a single process algorithm. During
search, a single CPA carries the assignments of some of the agents. The other
agents which are waiting for the message with assignments to arrive are still
unassigned. Therefore, each agent, in every step of the search, has either one
assignment or none. Asynchronous backtracking (ABT) is also an SPA. All
the variables in ABT have exactly one assignment at each instant of its run [9].

To maintain two concurrent assignments in a DisCSP, let us go back
to Chapter 7. Think of the first agent as assigning two of its values to its
variable. It then puts each assignment on a different message and initializes a
backtracking process for each one. Each backtrack process traverses all agents,
not in the same order, to accumulate assignments to all variables of all agents.
All agents eventually receive two messages. One message has the first assign-
ment for the first agent and the other has the second assignment that the first
agent performed. Agents that receive a message either add their compatible
assignment to the partial assignment already on the message or backtrack by
sending the message back. All agents use a different current domain for each
of the messages. It is easy to see that all agents react to the two messages
in exactly the same way, assigning their variable to it or backtracking. This
process stops when one of the messages accumulates a complete assignment
and reports a solution or when both messages return to the first agent and
find no more values to assign. In this case the two-process algorithm reports
failure.

Several single process DisCSP search algorithms have appeared in the lit-
erature in the last decade: synchronous algorithms like synchronous back-
track (SBT) and conflict-based backjumping (CBJ) [61, 68]; asynchronous al-
gorithms like asynchronous backtracking (ABT), asynchronous aggregations
search (AAS) and asynchronous forward-checking (AFC) [44, 54]. In contrast,
only a few multiple process DisCSP search algorithms appear in the litera-
ture [25, 55, 75]. The concurrent dynamic backtracking algorithm (ConcDB),
with dynamic splitting of search processes, will be the representative of this
family in the present study. ConcDB incorporates dynamic splitting, generat-
ing a variable number of search processes. Furthermore, the search processes

13.1 The Impact of Message Delays 145

cooporate in order to detect and terminate invalid active search processes
(see Chapter 7).

The representative synchronous SPA will be the best of its kind, syn-
chronous conflict-based backJumping (CBJ). The synchronous (distributed)
version of conflict based backjumping (CBJ) improves on simple synchronous
backtrack (SBT) by using a method based on dynamic backtracking [23]. In
the improved version, when an agent removes a value from its variable’s do-
main, it stores the eliminating explanation (Nogood), i.e., the subset of the
CPA that caused the removal. When a backtrack operation is performed, the
agent resolves its Nogoods, creating a conflict set which is used to determine
the culprit agent to which the backtrack message will be sent. The resulting
synchronous algorithm has the backjumping property (i.e., CBJ) [23]. When
the CPA is received again, values whose eliminating Nogoods are no longer
consistent with the partial assignment on the CPA are returned to the agents’
domain.

The CBJ algorithm is presented in Algorithm 13.1. In the main function,
the first agent initializes the search by creating a CPA, assigning and sending
it by using the function assign_CPA (lines 2-4). Lines 5-10 describe how
agents respond to one of three types of messages:

1. stop: indicating that the search has ended
2. CPA: carrying a CPA forward
3. backtrack: carrying a CPA backwards, with an inconsistent assignment

Upon the reception of a stop message the agent simply stops the search by
exiting the loop. When a CPA moving forward is received, the agent first
calls function refresh_domain. This returns to the agent’s current_domain
values whose explanation is not included in the received CPA. Next, the agent
calls function assign_CPA, attempting to assign its variable.

When a backtrack message is received, the agent calls function remove_
last_assignment which removes the value assignment of the agent in the in-
consistent CPA from its current_domain. It then stores it with the received
CPA in the form of a Nogood. Finally, it replaces the CPA with a copy of
the last CPA it sent, which holds the assignment it will try to extend and
send forward. This takes place in the function assign_CPA that is called
immediately after remove_last_assignment. When the agent fails to extend
a CPA it calls the function backtrack whose first line resolves the inconsistent
subset of the CPA (line 1). Then, a check is made whether the Nogood cre-
ated is empty which will indicate the DisCSP has no solution (lines 2-4). If
the Nogood found is not empty, it is sent to the agent with the lowest prior-
ity whose assignment is included in the Nogood (lines 6). This is standard
dynamic backtracking [23].

13.1 The Impact of Message Delays

The network of constraints, in each of the experiments, is generated randomly
by selecting the probability p1 of a constraint among any pair of variables and

146 13 Message Delays and DisCSP Search Algorithms

Algorithm 13.1: The distributed CBJ algorithm
• CBJ:

1.done ← false
2.if(first_agent)
3. CPA ← create_CPA
4. assign_CPA
5. while(not done)
6. switch msg.type
7. stop:done ← true
8. backtrack: remove_last_assignment
9. assign_CPA
10. CPA:refresh_domain
11. assign_CPA

• assign_CPA:
1. CPA ← assign_local
2. if(is_consistent(CPA))
3. if(is_full(CPA))
4. report_solution
5. stop
6. else
7. send(CPA, next)
8. else
9. backtrack

• backtrack:
1. CPA ← resolve_nogoods
2. if(is_empty(CPA))
3. CPA ← no_solution
4. stop
5. else
6. send(backtrack, CPA.last_asignee)

• remove_last_assignment:
1. store(CPA.last_assignment,CPA)
2. CPA ← {last_sent_CPA} \ {last_assignment}
3. current_domain ← {current_domain} \ {last_assignment}

• refresh_domain:
1. for each stored Nogood sn
2. if(not consistent(CPA,sn))
3. current_domain ← {current_domain} ∪ {sn.last_assignment}

• stop:
1. send(stop, all_other_agents)
2. done ← true

13.1 The Impact of Message Delays 147

the probability p2, for the occurrence of a violation among two assignments
of values to a constrained pair of variables. This set up is similar to that
of our experimental evaluation of DisCSP algorithms in Chapter 11. The
experiments with message delays were conducted on networks with 15 agents
(n = 15) and 10 values (k = 10). Two density parameters were used, p1 = 0.4
and p1 = 0.7. The value of p2 was varied between 0.1 to 0.9. This creates
problems that cover a wide range of difficulty, from easy problem instances
to instances that take several CPU minutes to solve (see Chapter 11). For
every pair (p1,p2) in the experiments we present the average over 50 randomly
generated instances.

In order to evaluate the algorithms, two measures of search effort are used.
One counts the number of nonconcurrent constraint checks (NCCCs), to mea-
sure computational cost. This measures the combined path of computation,
from beginning to end, in terms of constrait checks. The other measure used is
the communication load in the form of the total number of messages sent [37].
In order to evaluate the number of nonconcurrent CCs including message
delays, the AMDS simulator is used.

Fig. 13.1. Nonconcurrent constraint checks with no message delays (p1 = 0.4)

In the first set of experiments the three algorithms are compared with-
out any message delay. The results presented in Figures 13.1 and 13.3 show
that the numbers of nonconcurrent constraint checks that the three algo-
rithms perform are very similar, on systems with no message delays. ABT
performs slightly fewer steps than CBJ and ConcDB performs slightly bet-
ter than ABT. When it comes to network load, the results in Figures 13.2
and 13.4 show that, for the harder problem instances, agents in ABT send 4

148 13 Message Delays and DisCSP Search Algorithms

Fig. 13.2. Total number of messages with no message delays (p1 = 0.4)

to 5 times more messages than sent by agents running CBJ and ConcDB. All
four Figures, 13.1, 13.2, 13.3, and 13.4 clearly show the presence of a phase
transition [65]. The comparison of CBJ and ABT demonstrates clearly the
trade-off among single process DisCSP search algorithms. CBJ takes more
nonconcurrent constraint checks (Figure 13.1) and sends fewer messages (Fig-
ure 13.2).

In the second set of experiments, messages were delayed randomly for
50-100 nonconcurrent constraint checks. Figure 13.5 presents the number of
non concurrent constraint checks performed by the three algorithms running
on sparse DisCSPs (density p1 = 0.4) with random message delays. The
most obvious result of Figure 13.5 is that CBJ is affected most by message
delay. This could have been expected. Since CBJ performs no concurrent
computation the total amount of message delay is added to the runtime of
the algorithm. This gives a large effect on the run-time results. Figure 13.6
presents a closer look at the results of ABT and ConcDB in this run. While
ConcDB performed about 40% more NCCCs than the number of NCCCs it
performed with no message delays, ABT performes three times more NCCCs
than it does for perfect communication.

Figure 13.7 presents the total number of messages sent by the three al-
gorithms with random message delays. It is interesting to see that, while the
total number of messages sent by CBJ and ConcDB is not affected by mes-
sage delay, the number of messages sent by ABT grows by a factor of 2. Fig-
ures 13.8, 13.9 and 13.10 show similar results for denser DisCSPs (p1 = 0.7).

The third set of experiments investigates the impact of the size and range
of the random delays on the different algorithms. The effect of varying the

13.1 The Impact of Message Delays 149

Fig. 13.3. Nonconcurrent constraint checks with no message delays (p1 = 0.7)

Fig. 13.4. Total number of messages with no message delays (p1 = 0.7)

150 13 Message Delays and DisCSP Search Algorithms

Fig. 13.5. Nonconcurrent constraint checks with random message delays (p1 = 0.4)

Fig. 13.6. A closer look at NCCCs performed by ABT and ConcDB, with random
message delays (p1 = 0.4)

13.1 The Impact of Message Delays 151

Fig. 13.7. Total number of messages with random message delays (p1 = 0.4)

Fig. 13.8. Nonconcurrent constraint checks with random message delays (p1 = 0.7)

152 13 Message Delays and DisCSP Search Algorithms

Fig. 13.9. A closer look on the NCCCs performed by of ABT and ConcDB, with
random message delays (p1 = 0.7)

Fig. 13.10. Total number of messages with random message delays (p1 = 0.7)

13.1 The Impact of Message Delays 153

Fig. 13.11. Number of nonconcurrent CCs versus size of random message delays
(p1 = 0.4)

Fig. 13.12. Number of nonconcurrent CCs versus size of random message delays
(p1 = 0.7)

154 13 Message Delays and DisCSP Search Algorithms

delay size on a sequential assignment (synchronous) single search algorithm is
easy to understand. In order to investigate the behavior of algorithms which
perform concurrent computation, in the presence of message delays of different
sizes and range, experiments were performed for the harder problem instances.
The algorithms were run with an increasing amount and range of message de-
lay, on the hardest problem instances (tightness p2 = 0.6 for p1 = 0.4 and
p2 = 0.4 for p1 = 0.7). The impact of random delays on the different algo-
rithms is presented in Figures 13.11 and 13.12. The number of nonconcurrent
constraint checks of the single search algorithm (ABT) grows with the size
of the message delay. In contrast, larger delays have a small impact on the
number of nonconcurrent constraint checks performed by concurrent search
(ConcDB).

13.2 A summary of the Impact of Message Delays

While in systems with perfect communication, where there are no message
delays, the number of synchronous steps of computation (on a synchronous
simulator) is a good measure of the time of the algorithm run, the case is
different on realistic systems with message delays. The number of nonconcur-
rent constraints checks has to take delays into account. When the number of
nonconcurrent CCs is calculated, it reveals a large impact of message delay
on the performance of single process algorithms. In other words, the actual
time it would take CBJ to report a solution (including the delays of message)
is much longer than that of ConcDB or ABT.

In asynchronous backtracking, agents perform assignments asynchronously.
As a result of random message delays, some of their computation can be irrele-
vant due to inconsistent Agent_V iews while the updating message is delayed.
This can explain the large impact of message delays on the computation per-
formed by ABT (cf. [4, 54]). The impact is not as strong as in synchronous
CBJ (Figures 13.5, 13.7, 13.8, and 13.10).

In order to further investigate the behavior of the algorithms in the pres-
ence of message delays the simple method for counting nonconcurrent con-
straint checks of [45] (see Section 12.1) can be performed concurrently during
the run of the AMDS simulator. This would give us the number of NCCCs
which were actualy performed without the addition of messge delays to the fi-
nal result. Figures 13.13 and 13.14 present the actual count of nonconcurrent
constraints checks (without adding delays) performed by the agents during
the algorithm run. As expected, CBJ performs exactly the same number of
NCCCs as with no delays. The number of NCCCs performed by ABT in
the presence of delays, grows by a factor of 2. This illuminates an important
feature of the standard simulation of runs of DisCSP algorithms. Based on
instantaneous arrival of messages, ABT reads multiple messages at each step.
With random message delays, agents are more likely to respond to a single
message, instead of all the messages sent in the former (ideal) cycle of com-

13.2 A summary of the Impact of Message Delays 155

putation. Messages in asynchronous backtracking are often conflicting. As a
result, agents perform more unnecessary computation steps when responding
to fewer messages in each cycle. The improvement that results from reading
all incoming messages in each step [61], is no longer useful when messages
have random delays. This can explain a similar result for ABT, on a different
set of problems [4]. As can be seen in Figures 13.13 and 13.14, for a multiple
search process algorithm, like ConcDB, the number of actual nonconcurrent
CCs is not affected and even decreases by the delay of messages.

Fig. 13.13. Number of nonconcurrent CCs actualy performed versus size of random
message delays (p1 = 0.4)

To illuminate the robustness of ConcDB to message delay imagine the
following example. Consider the case where ConcDB splits the search space
multiple times and the number of CPAs is larger than the number of agents.
In systems with no message delays this would mean that some of the CPAs
are waiting in incoming queues, to be processed by the agents. This delays
the search on the sub-search-spaces they represent. In systems with message
delays, this potential waiting is caused by the system. By choosing the right
split_limit, agents can be kept busy at all times, performing computation
against consistent partial assignments. The experimental results presented in
this chapter demonstrate that the above claim can be achieved.

In terms of network load, the results above show that asynchronous back-
tracking puts a heavy load on the network, which doubles in the case of mes-
sage delays. The number of messages sent in concurrent search algorithms, is
always much smaller and is affected only lightly by message delays.

156 13 Message Delays and DisCSP Search Algorithms

Fig. 13.14. Number of nonconcurrent CCs actualy performed versus size of random
message delays (p1 = 0.7)

The number of nonconcurrent constraints checks takes into account the
impact of message delays on the actual runtime of DisCSP algorithms. Two
families of DisCSP search algorithms have been investigated. Single pro-
cess algorithms (SPAs) and multiple process algorithms (MPAs or concurrent
search). The results imply that, single process algorithms (SPAs), are much
more affected by message delays, than concurrent search. The number of NC-
CCs grows linearly with message delay for completely synchronous algorithms
like CBJ. The impact on asynchronous backtracking, (ABT), is large. Both
the computational effort and the load on the network grow by a large factor,
although the effect on run time is smaller than that of CBJ. This strengthens
the results of [4].

Concurrent search shows the greatest robustness to message delays. This is
connected to the fact that in concurrent search agents always perform compu-
tation against consistent partial assignments. Computation performed in one
sub-search-space while others are delayed is not wasted as in asynchronous
backtracking. The effect of message delay on concurrent search is minor in
terms of nonconcurrent constraint checks as well as on its network load.

13.3 Message Delays and Dynamic Ordering

The impact of message delays can be tested on the ABT algorithm with
and without dynamic agent ordering. Figure 13.15 presents the number of
nonconcurrent constraints checks performed by ABT and dynamically ordered

13.3 Message Delays and Dynamic Ordering 157

Fig. 13.15. Nonconcurrent constraint checks performed by ABT and ABT_DO
with and without message delays (from [73])

Fig. 13.16. Number of messages sent by ABT and ABT_DO with and without
message delays (from [73])

ABT on systems with optimal communication (i.e., with no message delays)
and on systems with random message delays between 50 and 100 CCs. It
is apparent that the impact of meaasge delays on standard ABT is larger
than on dynamically ordered ABT. Figure 13.16 presents the total number of
messages sent by the agents performing the algorithms. The effect of message
delays is similar on both algorithms. The number of messages increases by
about 30%.

To test further the impact of message delays on dynamically ordered asyn-
chronous backtracking, one can use the AWC algorithm (see Section 9.1). Ex-
periments were performed on smaller systems with 10 agents since AWC does

158 13 Message Delays and DisCSP Search Algorithms

not complete its runs in a reasonable time for larger problems in the presence
of message delays.

Fig. 13.17. Nonconcurrent constraint checks performed by AWC with and without
message delays (p1 = 0.4)

Fig. 13.18. Number of messages sent by AWC with and without message delays
(p1 = 0.4)

Figure 13.17 presents the number of nonconcurrent constraints checks per-
formed by AWC on sparse systems (p1 = 0.4). The factor of deterioration in
NCCCs for AWC is smaller than the factor for ABT and closer to the factor
of deterioration for ABT_DO. However, in the case of network load, as pre-
sented in Figure 13.18, the factor of deterioration in the presense of message
delays is much larger than for both versions of ABT.

14

Distributed Constraint Optimization Problems
(DisCOPs)

Similarly to the transition from CSP to DisCSP, a DisCOP is a COP in
which the variables are divided among a set of agents A1, A2, ..., An. Each
agent knows only the constraints of its local variables. Again, it is often as-
sumed that each agent holds exactly one variable, by the same reasoning used
for the same assumption in DisCSPs (see Chapter 4). It is easy to see that
agents that hold multiple variables can be constructed from single-variable
agents in two general ways. One way is to define a composite assignment
state for multiple-variable agents. Each such state is composed of assignments
to all of the agent’s variables. This will make agents have a large number of
values, all combined assignments of an agent’s variables. However, it clearly
generates a single variable. The other form of generalizing a multiple-variable
agent is to define virtual agents, each holding one of the variables of the agent.
Thus, each agent in the distributed problem is a single-variable agent. Assum-
ing only single-variable agents has been the practice of all researchers in the
field (cf. [9, 47]).

Agents communicate by messages, trying to find a solution to the DisCOP.
The same assumptions of DisCSPs are used: messages arrive in a finite time;
in the order in which they were sent; a total ordering of the agents and vari-
ables is known to all agents; and the constraints are at most binary. These
assumptions are commonly used for DisCSP and DisCOP algorithms [47, 61].
We will assume that each agent owns a single variable and thus use the terms
“agent” and “variable” interchangeably. DisCOPs with all costs equaling ei-
ther zero or one are called MaxDisCSPs, in accordance with MaxCSPs for the
centralized case [33, 36].

MaxDisCSPs are DisCSPs in which the goal of the solving algorithm is
to find a global assignment with a minimal number of violated constraints.
For a soluble DisCSP this problem is equivalent and the solution has zero
violations of constraints. For unsolvable DisCSPs the solving algorithm needs
to scan the complete search space in order to find a global assignment with
a minimal number of violated constraints. As was explained in Chapter 3,

160 14 Distributed Constraint Optimization Problems (DisCOPs)

a natural algorithm for solving MaxCSPs is the branch & bound algorithm.
Distributed versions of BnB will be discussed in the present chapter.

There are a few complete DisCOP algorithms that have been proposed
in the literature. We will review most of them in the following sections. We
choose to omit from this list of algorithms the algorithm ADOPT, and devote
an entire chapter to it (Chapter 15) for several reasons. First, it is considered
by many researchers as the leading DisCOP solver. Second, it is a complex
asynchronous algorithm, and to fully understand it requires more than a single
section. Third, we implemented this algorithm in our simulator (see [22, 72]),
and explored its performance and behavior. In-depth understanding of this
algorithm is a significant part of our comparative studies of the behavior of
DisCOP algorithms, especially its detailed comparison to the AFB algorithm
in Chapter 16 [22].
The rest of the chapter is divided as follows:

• In Section 14.1 an agent ordering of the form called “pseudo-tree” is de-
scribed. This ordering is used by the DPOP algorithm as well as by the
ADOPT algorithm.

• The simplest algorithm for DisCOPs is the synchronous branch and bound
(SBB) algorithm (Section 3.1). SBB is the extension of the BnB algo-
rithm for COPs to the distributed world. This extension is similar to
the way in which the backtracking algorithm for CSPs was extended into
the synchronous backtracking (SBT) algorithm for DisCSPs (Chapter 4).
The SBB algorithm is the first DisCOP algorithm to be described (Sec-
tion 14.2).

• Section 14.3 presents a recent DisCOP algorithm - the Distributed Pseudo-
tree Optimization algorithm (DPOP) [49]. The DPOP algorithm propa-
gates information from lower priority to higher priority agents, until all
information arrives at the highest priority agent, which then has enough
information to immediately choose its optimal value. This value is in-
formed to lower priority agents, which use it together with the informa-
tion they previously propagated to also immediately choose their optimal
value. DPOP is therefore a very special DisCOP algorithm that finds an
optimal solution in two passes, but uses exponential size messages [49]. It
is described in Section 14.3.

• For the sake of completeness, a brief description of the OptAPO algo-
rithm is given in Section 14.4. OptAPO uses mediation to construct con-
nected sub problems, which are solved in a centralized manner by a selected
agent (the mediator), and then merged with other subproblem solutions
to achieve a global solution.

14.1 Pseudo-trees

In a tree ordering, there is a single agent that is placed at the root. Each node
agent has zero or more children; all agents except the root have a parent. A

14.2 Synchronous Branch and Bound (SBB) 161

pseudo-tree ordering [20] is a tree ordering with the following unique property.
If two agents share a constraint, then one of these agents is an ancestor of
the other. This means that all constraints are either from parent to son (tree
edges), or from an agent to one of its ancestors (back edges).

Pseudo-trees are useful for solving COPs because they allow splitting the
problem into several smaller subproblems, solving the subproblems indepen-
dently, and then merging the solution into a global solution. Given a node
in the tree and the assignment of it and all of its ancestors, the subproblems
rooted at this node’s children can each be solved independently. If the as-
signments of the node and its ancestors are fixed, the optimal assignments
of each subproblem are in fact the global optimal assignments. This is be-
cause constraints between subproblems cannot exist, as the constraints are
only between a node and its descendants and ancestors.

As for how to find a pseudo-tree ordering, a simple solution is to build a
depth first search tree (DFS tree) of the constraint graph. One can prove that
a DFS tree is a pseudo-tree. However, this might not be the best pseudo-tree.
A good pseudo-tree should have a low depth and a high width. Such a tree
would include smaller sub problems to solve. Finding the optimal pseudo-tree
among all possible trees is an NP -hard problem [28].

14.2 Synchronous Branch and Bound (SBB)

SBB [27, 47] is the extension of the BnB algorithm (for COPs) to an algorithm
for DisCOPs. This is the simplest distributed version of the branch and bound
algorithm (DisBnB). The framework of the algorithm is as follows. Only the
agent holding the CPA message may perform computation. There is a single
CPA message, containing a partial assignment. The CPA starts at the first
agent, which assigns its first value to it and sends it to the second agent. Each
agent that receives the CPA extends it by writing on it a value assignment to
its variable, as well as the cost it incurred because of constraints with other
assignments appearing in the received CPA. Whenever the CPA reaches a new
full assignment at the last agent, the accumulated cost of the CPA is the cost
of that full assignment. If this cost is smaller than the known upper bound, it is
broadcast to all agents as the new upper bound. Each agent holding the CPA
checks whether the CPA’s accumulated cost is smaller than the upper bound.
If this is false, it assigns the next value in its domain instead of the current
value and checks again. An agent encountering an empty domain of values
erases its assignment (and its cost) and sends the CPA back to the previous
agent. When the domain of the first agent is exhausted, the last discovered
full assignment is reported as the solution (this requires remembering what
that assignment was, which can be done by the last agent).

The drawbacks of SBB are similar to the drawbacks of SBT in DisCSPs.
It is a slow algorithm that only allows agents to perform computation while
they hold the CPA message. There is only one such message in the system

162 14 Distributed Constraint Optimization Problems (DisCOPs)

and most of the time the agents are idle, since another agent holds the CPA
or the CPA is en route between two agents.

14.3 Distributed Pseudo-tree Optimization (DPOP)

Fig. 14.1. The DPOP algorithm, part I - from [49]

The DPOP algorithm [49] is presented in Figures 14.1 and 14.2 (taken by
permission from [49]) and is composed of three phases. The intuitive frame-
work of each phase is as follows:

• In the first phase, a pseudo-tree ordering of the agents is constructed (see
Section 14.1).

• In the second phase, UTIL messages are propagated from the leaves up
to the root of the tree. A leaf agent that sends out a UTIL message,
includes in it the best (lowest) cost it can achieve for each combination of
value assignments of the agents it is constrained with. Agents that receive
UTIL messages from down the tree use them to construct their own UTIL
message, and report to their parent. UTIL messages take into account all
constraining agents above them. In addition, all other agents mentioned

14.3 Distributed Pseudo-tree Optimization (DPOP) 163

Fig. 14.2. The DPOP algorithm, part II - from [49]

in UTIL messages received from sons are also kept. For each combination
of value assignments for all these agents, the lowest cost of the subtree
rooted at the agent is selected. This means that agents must wait for
all UTIL messages from all their sons before sending out their own UTIL
message. Additionally, this means that the size of the message is potentially
exponential. UTIL messages propagate until the root agent. The root agent
can now combine the information from all UTIL messages of its successors,
and determine the optimal value assignment to its variable. It can do so
because the UTIL messages explicitly contain the optimal cost achieved
for each of its value assignment, in each of its subtrees.

• Upon completion of the second phase of the algorithm the third phase
of the algorithm begins the VALUE propagation. In this phase, the root
agent assigns its optimal value, and informs its sons of this. The sons can
now, using the UTIL information they previously computed, determine
what value is optimal for their variable. They know the final value picked
by their ancestors, and after assigning it, they too can inform their sons of
their selected value in VALUE messages. This phase ends once all variables
are assigned (i.e., VALUE messages have propagated to every leaf).

A major drawback of the DPOP algorithm is that it is fully synchronous.
Agents must wait for all their sons to finish their computation before they

164 14 Distributed Constraint Optimization Problems (DisCOPs)

may perform their own computation. However, there is a much more severe
drawback to this algorithm, which is the size of the messages. Messages in
DPOP may be exponentially large. For example, in a fully connected problem,
a pseudo-tree would be a chain, and if there are 10 agents, then the UTIL
message from the leaf agent to its parent would include its cost for each
assignment combination of the other nine agents. If the domains are of size
10, then this message contains at least 109 such values [49].

In the two years since its first appearance much work has been published on
the DPOP algorithm. It was empirically compared to the ADOPT algorithm
in [50] and found to have better performance. Another way of dealing with
exponential message size is to try and design approximations of pure DPOP.
One such approximation was introduced in the form of MB : DPOP , a
memory-bounded form of DPOP [50].

14.4 Optimal Asynchronous Partial Overlay (OptAPO)

A completely different DisCOP algorithm was proposed in 2004. The main
idea of the Asynchronous Partial Overlay (APO) algorithm is to solve parts
of the DisCOP problem and then merge the partial solutions into a global
one [40]. The APO algorithm was proposed in two forms, one for satisfac-
tion problems (e.g. DisCSPs) [39] and the other for optimization problems
(DisCOPs). The optimizing version is called OptAPO [40]. OptAPO divides
the agents into groups (initially of size one). Each group’s sub-problem is
solved optimally by the leader of the group (called the mediator) using a cen-
tralized BnB algorithm. Constraints with a cost greater than zero between
solutions of neighboring groups cause these neighboring groups to merge into
a single bigger group, which will be used in the next round. This growth of
the group is actually performed in procedure mediate. As can be seen in Algo-
rithm 14.2, this procedure is called when no conflict-free partial solution can
be found (in procedure check_agent_view in Algorithm 14.1).

The algorithm terminates when there are no more violated constraints be-
tween groups, and each group’s subproblem was optimally solved, which means
a globally optimal solution was found. Most of the pseudo-code of OptAPO,
as it appears in [40], is presented in Algorithm 14.1 and Algorithm 14.2. Due
to the complexity of OptAPO, and the length of its pseudo-code, we will not
explain this pseudo-code in detail. We refer the reader to the relevant paper
[40] for a more comprehensive explanation. The following paragraphs describe
intuitively the main ideas of the OptAPO algorithm.

OptAPO works by constructing a good_list and maintaining a structure
called the agent_view. The agent view stores the names, values, domains,
and constraints of agents in the environment that are linked to the owner
of the agent view. The good_list holds the names of the agents with whom
the owner has identified either a direct or indirect constraint. As the problem
solving unfolds, each agent tries to improve the value of the subproblem they

14.4 Optimal Asynchronous Partial Overlay (OptAPO) 165

Algorithm 14.1: OptAPO - initialization and local resolution
procedure initialize

di ← random d ∈ Di;
pi ← sizeof(neighbors) + 1;
mi ← true;
mediate← false;
add xi to the good_list ;
send (init, (xi, pi, di, mi, Di, Ci)) to neighbors;
initList← neighbors;

end initialize;

when received (init, (xj , pj , dj , mj , Dj , Cj)) do
add (xj , pj , dj , mj , Dj , Cj) to agent_view ;
if xj is a neighbor of some xk ∈ good_list do

add xj to the good_list ;
add all xl ∈ agent_view ∧ xl /∈ good_list

that can now be connected to the good_list ;
pi ← sizeof(good_list);

end if ;
if xj /∈ initList do

send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
else

remove xj from initList ;
end if ;
check_agent_view;

end do;

when received (value?, (xj , pj , dj , mj , cj)) do
update agent_view with (xj , pj , dj , mj , cj);
check_agent_view;

end do;

procedure check_agent_view
if initList 6= ∅ or mediate 6= false do

return;
m′

i ← hasConflict(xi);
if m′

i and ¬∃j(pj > pi ∧mj == true) do
if ∃(d′i ∈ Di)(d

′
i ∪ agent_view does not conflict)

and di conflicts exclusively with lower priority neighbors do
di ← d′i;
send (ok?, (xi, pi, di, mi)) to all xj ∈ agent_view;

else
do mediate;

end if ;
else if mi 6= m′

i do
mi ← m′

i;
send (ok?, (xi, pi, di, mi)) to all xj ∈ agent_view;

end if ;
end check_agent_view;

1

166 14 Distributed Constraint Optimization Problems (DisCOPs)

Algorithm 14.2: Mediating an OptAPO session
procedure mediate

preferences← ∅;
counter ← 0;
for each xj ∈ good_list do

send (evaluate?, (xi, pi, m
′
i)) to xj ;

counter++;
end do;
mediate← true;

end mediate;

when received (wait!, (xj , pj)) do
counter--;
if counter == 0 do choose_solution;

end do;

when received (evaluate!, (xj , pj , labeled Dj)) do
record (xj , labeled Dj) in preferences;
counter--;
if counter == 0 do choose_solution;

end do;

procedure choose_solution
select a solution s using a branch and bound search that:

1. satisfies the constraints between agents in the good_list
2. minimizes the violations for agents outside of the session

if ¬∃s that satisfies the constraints do
broadcast no solution;

for each xj ∈ agent_view do
if xj ∈ preferences do

if d′j ∈ s violates an xk and xk /∈ agent_view do
send (init, (xi, pi, di, mi, Di, Ci)) to xk;
add xk to initList ;

end if ;
send (accept!, (d′j , xi, pi, di, mi)) to xj ;
update agent_view for xj ;

else
send (ok?, (xi, pi, di, mi)) to xj ;

end if ;
end do;
mediate← false;
check_agent_view;

end choose_solution;
1

14.4 Optimal Asynchronous Partial Overlay (OptAPO) 167

have centralized within their good_list or to justify its cost by identifying over-
constrained structures in the constraint graph. To do this, agents take the role
of the Mediator and initiate a mediation session with agents in their good_list.
They compute the optimal value of their subproblem, and attempt to change
the assignments of the variables within the session to achieve this optimal
value. Whenever this cannot be achieved without causing a cost greater than
zero for agents outside of the session, the mediator links with those agents to
include them in the next session (adding to the good_list). In other words,
the subproblem it is going to try to solve optimally in the next step of the
OptAPO algorithm will also contain these additional agents. This process
continues until each of the agents have justified the cost of their centralized
subproblem and they have ensured that this subproblem contains all of the
cost-bearing substructures that they need in order to be solved optimally.

OptAPO uses priorities to determine which agents should be mediators
and which agents should join other agent’s mediation session requests (this
bears a close resemblance to leader election in a distributed environment [37]).
The priorities are dynamically computed based on the size of the good_list, so
that agents involved in larger subproblems have a higher priority than agents
in smaller subproblems. The solving of a subproblem is done by the mediator
agent alone, using a centralized algorithm such as branch and bound. This is
possible since the agents involved in this subproblem send the mediator agent
all their variable domains and constraints (in "init" messages).

An important observation about OptAPO is that the size of the subprob-
lems increases with run time. Whenever there is a constraint of cost greater
than zero between two agents belonging to two different subproblems, one of
these agents joins the other’s subproblem. The two mediators in charge of
solving the two subproblems independently solve their subproblems optimally
and have no way of coordinating the assignments to the two agents so that
this constraint’s cost would be zero and no such merging would take place.
Furthermore, it is possible that a cost of zero between two constrained agents
would be impossible due to the constraint definition. In general, the agents
in small subproblems merge into the bigger subproblems and over time we
get fewer groups of larger size. An extreme example is one in which for all
constraints, all value combinations have a cost greater than zero. This would
eventually lead to the creation of one big subproblem that contains all the
agents, which will be solved centrally by a single agent.

The above observation emphasizes the main drawback of the OptAPO
algorithm; its centralized solving. Solving a distributed problem via full cen-
tralization is always possible, but should not be done, for the reasons we listed
in Chapter 4 such as privacy, lack of autonomy, and single point of failure. Op-
tAPO does not fully centralize the problem, but instead attempts to identify
clusters of highly constrained agents and only solve each small cluster cen-
trally. These clusters might be small, but might also be large. This depends
on the structure of the problem and the duration of the run time. For harder

168 14 Distributed Constraint Optimization Problems (DisCOPs)

problems (highly constrained, that take a long time to solve) the clusters are
expected to grow in size, up to the size of the entire problem.

15

Asynchronous Optimization for DisCOPs

Chapter 14 presented the distributed constraint optimization problem (DisCOP)
as well as several solvers for it. One of the leading complete solvers for Dis-
COPs is the ADOPT algorithm by Modi et. al [47]. Its most important
feature is the fact that it is inherently asynchronous. The synchronicity of
ADOPT leads naturally to expecting superior (concurrent) performance to
that of synchronous-assignments DisCOP algorithms. In many aspects the
asynchronous aspects of ADOPT are analogous to those of ABT and raise
similar expectations of performance. As we have seen for DisCSPs (Chap-
ter 11), this is definitely not the case. Concurrent search algorithms that
perform assignments synchronously outperform an inherently asynchronous
algorithm like ABT by a large margin [44, 75].

Several improvements for ADOPT were proposed recently. Our goal in this
chapter is not to present the best version of ADOPT , but rather to present
and explain the ADOPT algorithm, as well as discuss several less noticeable
aspects of the algorithm that were revealed during our implementation of it.
These aspects include the following:

• Its unusual update of value assignments made by higher priority agents,
that come from lower priority agents (see Section 15.5).

• Its use of pseudo-trees to enhance its performance, and its implications
(see Section 15.5.2).

• The network load of ADOPT , and why it gets so large (see Section 15.5.3).

For simplicity, we deal only with DisCOPs in which each agent holds a single
variable, and thus we use the terms agent and variable interchangeably.

ADOPT is a complex algorithm, with a large amount of pseudo-code [47].
Instead of explaining the lengthy code, let us try to understand the main
ideas behind ADOPT in incremental steps. First, we will explain what are
the upper and lower bounds that ADOPT uses, how are they computed and
what they mean (Section 15.1). The basic value assignment logic of each agent
will be explained in Section 15.2. The threshold mechanism used by ADOPT
is added on top of the basic framework to improve performance (Section 15.3).

170 15 Asynchronous Optimization for DisCOPs

Following these preliminaries, the entire algorithm, as well as its termination
mechanism, can be presented.

15.1 Lower and Upper Bounds in ADOPT

The basic framework of ADOPT relies on the computation of lower and upper
bounds by each agent. The agents are pre-arranged (before the search) in a
pseudo-tree ordering (see Section 14.1 for the definition of pseudo-trees). Each
agent is responsible for computing bounds for the entire subproblem rooted
at it, and reporting them to its parent. Here are some definitions that will
help us understand what these bounds are:

• Agent priority - between two agents that share a constraint, the one further
up the tree is said to be of higher priority.

• CurrentContext (or agentview) - a context is a partial assignment. Two
contexts are compatible if they do not disagree on any variable assignment.
The CurrentContext is the current agent’s context of the assignments
made by higher priorty agents.

• δ(d) is the local cost of the value d ∈ Di. It is the added cost of con-
straints that apply to the assignment Xi = d and all assignments in the
CurrentContext.

• LB is the lower bound of the subproblem rooted at the current agent with
respect to the CurrentContext. As explained in Chapter 3, the meaning
of a lower bound is that, if a problem has a lower bound LB, any solution
for it would cost at least LB.

• UB is the upper bound of the subproblem rooted at the current agent with
respect to the CurrentContext. As explained in Chapter 3, the meaning
of an upper bound is that, if a problem has an upper bound UB, a full
assignment with cost smaller or equal to UB exists. In other words, a
solution would cost at most UB.

• LB(d) is the lower bound of the subproblem rooted at the current agent
with respect to both the CurrentContext and the assignment of d to the
current agent.

• UB(d) is the upper bound of the subproblem rooted at the current agent
with respect to both the CurrentContext and the assignment of d to the
current agent.

From these definitions, we get the following two equalities:

1. LB = mind∈DiLB(d) - since any solution to the subproblem in which the
current agent assigns the value d would cost at least LB(d), and since
this agent must assign one of its possible domain values d ∈ Di, then the
minimal value of all possible LB(d) is in fact the lower bound for the entire
subproblem rooted at Ai.

15.1 Lower and Upper Bounds in ADOPT 171

2. UB = mind∈Di
UB(d) - The solution to the subproblem rooted at Ai,

in which Ai = d would cost at most UB(d). A solution to the entire
subproblem rooted at Ai, would cost at most UB(d1) if Ai assigns d1,
or would cost at most UB(d2) if Ai assigns d2, and so on. Therefore a
solution to the entire subproblem rooted at Ai would cost at most UB =
mind∈Di

UB(d).

In ADOPT , each agent receives the value assignments of higher priority
agents via VALUE messages, and is responsible for computing lower and upper
bounds (LB and UB) for the subproblem rooted at it. These bounds are
continually refined over time, and are reported to the parent agent via COST
messages. To compute these bounds all an agent needs are the lower and upper
bounds received from its children, and to compute its local cost. The exact
details of this computation will be explained at the end of this subsection.
The algorithm is asynchronous, and therefore these bounds only need to be
admissible. A lower bound of zero and an upper bound of infinity are always
correct, so even in the lack of information the agent does not need to wait for
messages and can report admissible bounds. If later more accurate information
is received (from its sons) then the following COST messages that the parent
will send will be more accurate.

The search process attempts to decrease the gap between the LB and the
UB at each agent. The LB is increased and the UB decreases over time. If
the lower bound and the upper bound are equal, it means that, for the given
problem (or subproblem), any full assignment would cost at least as much as
the lower bound, and that a full assignment of cost smaller or equal to the
upper bound was found. Since the lower bound and upper bound are equal,
that full assignment is an optimal solution.

15.1.1 Computing lower and upper bounds

Each agent keeps, for every value in its domain d ∈ Di, and every child it has
xl ∈ Children, the following data structures:

• context(d, xl) is the current context held by xl as last reported.
• lb(d, xl) is the lower bound reported by xl for the subproblem rooted

at xl, based on the assignments in context(d, xl) and the assignment of
Xi = d.

• ub(d, xl) is similarly defined for the upper bound.
• t(d, xl) is the threshold assigned to child xl will be explained in Sec-

tion 15.3.

Whenever a VALUE message is received from a higher priority agent the
CurrentContext is updated. All data structures which were based on some
context(d, xl) which is incompatible with the updated CurrentContext are
reset.

172 15 Asynchronous Optimization for DisCOPs

When a COST message from a child Al is received, it contains the child’s
LB, UB, and a copy of the CurrentContext of that child by which these
bounds were computed. If the message’s context is compatible with the
CurrentContext (of Ai), then the lb(d, xl), ub(d, xl), and t(d, xl) are updated
with the received information. The combination of only saving COST informa-
tion compatible with the CurrentContext, and resetting the data structures
that contain information computed based on contexts which are incompatible
with the CurrentContext, ensures that the information is always compatible
with the CurrentContext.

Using this saved information, the agent can compute its LB and UB. In
order to do so, it only needs to compute the LB(d) and UB(d) for every d ∈ Di,
since LB and UB can be computed from these.

LB(d) is a lower bound of the subproblem rooted at Ai with respect to
the CurrentContext, and the assignment of d to the current agent Ai. We
can see that LB(d) = δ(d)+

∑
xl∈Children lb(d, xl) is such a lower bound, as it

includes the local cost of constraints between Ai = d and past assignments in
CurrentContext, and the sum of the lower bounds of each of the subproblems
rooted at every child of Ai (these can be added since we are using pseudo-
trees).

Similarly,UB(d) can be computed to be UB(d)=δ(d)+
∑

xl∈Children ub(d, xl).
UB(d) is the upper bound for the subproblem rooted at Ai with respect to the
CurrentContext and the assignment of d to Ai. This means that a solution to
this subproblem can be found with a cost no greater than UB(d). If a solution
to each child’s subproblem exists with cost no greater than ub(d, xl), then
these solutions could be merged, and their costs added, into a global solution
to the entire subproblem rooted at Ai, and together with the local cost of Ai,
form an admissible upper bound for this entire subproblem.

15.2 Assigning Values

In the process of continuously attempting to increase the LB, each agent
ensures that its current value assignment d, is one that yields the lowest
LB(d) value (of all possible domain values d ∈ Di). The agent informs its
descendants of any assignment change it makes (via VALUE messages). Over
time, the subproblem rooted at this agent is explored and LB(d) and UB(d)
become tighter (the difference between them decreases).

Since the bounds for values are continuously refined as the search space
is explored, the lower bound for the currently assigned value may increase.
ADOPT is greedy in its value assignments. If the lower bound for the currently
assigned value d1, LB(d1), is incremented and it is no longer the minimal
LB(d), that agent changes its assignment to a value that does have the lowest
lower bound. This leads to a different search space being explored, and over
time more accurate bounds will be discovered. These may lead to another
assignment change and so on. In other words, in ADOPT an agent changes

15.2 Assigning Values 173

its value assignment if the result of exploration of the current subproblem,
which resulted in the lower bound for the current value assigned, is greater
than the lower bound for another value. This type of exploration results in
revisiting of values. For example an agent with two values may have assigned
the first value, which had a lower bound of zero. Later it could find that
the lower bound for this value is one, and this would cause it to switch its
assignment to the second value. Later, the lower bound of this value could rise
to two, which would cause the agent to switch back to the first value. Once
the current value’s lower and upper bound are equal, this value is the optimal
value assignment for this agent. The agent will not switch its assignment an
infinite number of times, since each assignment change is due to a LB(d)
increase from some value d, and LB(d) is bounded by the optimal cost of the
subproblem.

Similarly to ABT (see Chapter 5), each agent in ADOPT keeps the assign-
ment of higher priority agents, and only maintains the information relevant to
their current assignment. When some higher priority agent informs an agent
of an assignment change, the CurrentContext of the agent becomes invalid,
and must be updated, and all the information (lower and upper bounds) using
this invalid context must be discarded. The alternative, keeping all obsolete
data, would require exponential memory. An assignment change at an agent,
results in the need to discard all the lower and upper bounds computed/saved
at descendant agents.

In ABT, information was also discarded when the Agent_V iew was
changed. However, it was not as important. In ABT, a previous combination
of value assignments (of all higher priority agents) can never repeat itself. In
ADOPT , there is a revisiting of values, and this situation can happen. The
threshold mechanism addresses this issue and is described in Section 15.3.

To conclude, the basic framework of ADOPT is as follows. Each agent
assigns a value and informs its descendants via VALUE messages. Each agent
also computes its LB and UB and reports them to its parent via COST mes-
sages. The bounds are reported constantly, without waiting for the entire
search space to be explored and accurate bounds to be computed. These
bounds are updated asynchronously over time. Using bounds from its chil-
dren an agent can compute its own bounds and report them up the tree.
Each agent attempts to pick the lowest-cost assignment it can, the one with
the lowest lower bound. After assigning it, that subspace is explored and
the lower bound increases. Once it increases enough, the agent finds a more
promising value with a lower lower-bound and changes its assignment to that
value. Changing the assignment, causes bounds computed further down the
tree to be discarded as they are no longer relevant to the new context, and
new bounds are gathered for the new assignment combination. The root agent
cannot endlessly change its assignment since each such change is due to a lower
bound increase, and this lower bound is bounded by the cost of the optimal
solution. At some point it will stop changing its assignment. Now that the

174 15 Asynchronous Optimization for DisCOPs

root’s assignment is fixed, the assignments of all agents eventually become
fixed and all agents find their assignment to result in an optimal solution.

Fig. 15.1. The main ADOPT procedures (from [47])

15.3 The Threshold Mechanism 175

15.3 The Threshold Mechanism

In order to improve the performance of ADOPT , a threshold mechanism was
introduced (ADOPT was already presented with this improvement when it
was presented in [46]). Each agent maintains a threshold value, which is ini-
tially zero. This value can either be set by that agent’s parent via a THRESH-
OLD message, or set by the current agent itself. Intuitively, the threshold of
an agent represents what a lower bound of the subproblem rooted at this
agent is currently or was previously known. Because an agent cannot keep
information not consistent with the CurrentContext, it must forget its LB
value when a higher priority agent, like its parent, changes its assignment.
However, if the parent agent later returns to its past assignment, then the
previously discovered LB, saved at the parent, could be useful in speeding up
the search at the son. The parent instructs the son to set its threshold value
to the last LB the son reported. The child realizes it is revisiting a previously
explored search-space, and knows not to swap its value assignment unless it
exceeds that a previously discovered LB. Because it does not swap its assign-
ment often, this allows the agents below it to explore the search space faster,
without resetting their data structures on every assignment change. So, agents
use the threshold value instead of the LB value in deciding when to swap their
current assignment.

As we said, the threshold of an agent represents what the lower bound of
the subproblem rooted at this agent is currently, or what was previously known
to be the lower bound. To keep it accurate with the current LB, whenever the
threshold is below the current LB, it is incremented by the agent to be equal
to the LB.

In addition, as we will see, it is possible that an agent may receive a
threshold from its parent that is too large. In such a case, the agent may
discover that the UB is smaller than the threshold. This means that a solution
can be reached with a cost of UB or less. Therefore, keeping the threshold (as
an intuitive lower bound) higher than this cost will not help, and the threshold
is reduced to be equal to the UB.

The above may become possible in a scenario in which an agent Ai re-
ports its bound to its parent Aj . Aj changes his assignments a few times and
eventually returns to a previously assigned value. Now, Aj directs Ai to set
its threshold to some value t, which is the value that Ai previously reported
to be its LB when Aj assigned the same value last time. Ai knows that it
previously discovered that the lower bound for the subproblem rooted at it
was t. Consider for example the situation in which Ai has two sons - Aleft and
Aright. Ai knows that the LB it computed before was composed of the sum
of the lower bounds it received from both of its sons plus its local cost (see
the equalities in Section 15.1). Ai’s local cost computed now and computed
back then is of course the same, as Ai’s context is the same in both scenarios.
However, Ai cannot know how much of t was from each son’s LB, and cannot
know what threshold to give them. As a result of this missing information,

176 15 Asynchronous Optimization for DisCOPs

Ai must use some heuristic, called the threshold heuristic, to divide t be-
tween its sons. Ai keeps a data structures t(d, xl) to hold the threshold value
allocated to son xl when Ai’s assignment is d (see [47]).

Let us consider two possible cases. If Ai assigned a threshold too small
to Aleft (than what it would have assigned if it remembered what that son
reported as its LB), then maybe Aleft would not gain as much as it can
to speed up its re-exploration. If its threshold were 0, which is equivalent
to not using thresholds at all, this will imply some more thrashing during
its exploration. However, Aleft would always rediscover its previous LB and
increase its threshold to match it.

If Ai assigned a threshold too great to Aleft, then we seem to risk a
non-optimal solution. Aleft thinks that its previous LB had that value and
may stay with a value that gives a cost greater than the originally discovered
LB, but smaller than or equal to the given threshold. Aleft would wrongly
think that there is no reason to change it, as any value it picks would produce
at least as much cost. If Aleft is lucky, it may discover the UB to be smaller
than the threshold and decrease it, but will not always be able to do so. The
“salvation” comes from Ai, or more accurately, from Aright. If Ai assigned a
threshold that is too high to Aleft then it necessarily assigned a too small one
to Aright. Given enough time, Aright would rediscover its LB and increment
its threshold. The next COST message from Aright would contain this LB.
Once Ai receives it, it will realize its error, and send a new THRESHOLD
message to Aleft, setting its threshold to a smaller value.

In practice, each agent in ADOPT continuously maintains three invariants
to handle the thresholds to express the above behavior:

• ThresholdInvariant: LB ≤ threshold ≤ UB. The threshold on the cost
of the subtree rooted at xi cannot be less than its lower bound or greater
than its upper bound.

• AllocationInvariant: for a current value d ∈ Di,
threshold = δ(d) +

∑
xl∈Children t(d, xl).

The threshold on cost for xi must equal the local cost of choosing d plus
the sum of the thresholds allocated to xi Šs children.

• ChildThresholdInvariant:
∀d ∈ Di, ∀xl ∈ Children, lb(d, xl) ≤ t(d, xl) ≤ ub(d, xl)
The threshold allocated to child xl by parent xi cannot be less than the
lower bound or greater than the upper bound reported by xl to xi.

The procedures in Figure 15.2 show how these invariants are enforced.

15.4 ADOPT - Summary and Termination

The pseudo-code for the main ADOPT procedures, taken from [47], is shown
in Figure 15.1. The computation of bounds is not included and was already
explained in detail in the text. The algorithm starts by each agent performing

15.4 ADOPT - Summary and Termination 177

Fig. 15.2. Procedures for updating thresholds in ADOPT [47]

the initialize procedure, which initializes all its data structures and assigns
some value. Then the procedure backtrack is called. Unfortunately, the back-
track procedure was poorly named. There is no relation between this proce-
dure and the traditional definition of backtracking. This backtrack procedure
checks if the current value assignment should be changed, and if so, changes it.
Next, VALUE messages containing the current assigned value are sent to all
lower priority neighbors (descendants in the tree). A COST message with the
agent’s UB, LB, and CurrentContext are sent to its parent. This procedure
is performed not only after initialization, but also following every message
received.

178 15 Asynchronous Optimization for DisCOPs

The when received THRESHOLD procedure sets the agent’s threshold to
the threshold sent by the parent, makes sure the threshold invariants are
maintained, and calls the backtrack procedure.

The when received VALUE procedure simply updates the CurrentContext
with the value assignment, re-initializes data structures that are no longer
valid due to this update, and calls the backtrack procedure.

The when received COST procedure takes the context by which the LB
and UB in the message were computed, uses it to update its CurrentContext
with the assignments of agents that are of higher priority but not directly
constrained with this agent (which means they do not send VALUE mes-
sages to this agent), then re-initializes data structures that are no longer valid
due to this update. If the message’s context is compatible with this agent’s
CurrentContext, the information on the message is saved in the lb(), ub()
and context() data structures. This may break the threshold invariants so
they must be re-enforced. Finally, the backtrack procedure is called.
Termination of ADOPT
The termination of ADOPT starts at the root and goes down the tree from
top to bottom. When the root’s threshold (which is also equal to its LB since
it has no parent to change it) equals UB, the cost of the solution is known,
and a value that gave such a LB (which equals UB) is picked. The root then
sends the TERMINATE message to its sons along with its assignment and
terminates (see line 47 in Figure 15.1). An agent which received a TERMI-
NATE message from its parent records it in the when received TERMINATE
procedure, saves the assignments of terminated agents in its CurrentContext
and calls the backtrack procedure. Now every such agent is like the root, it
cannot receive messages from higher in the tree, and its CurrentContext is
fixed forever (updating it from any further VALUE or COST messages is dis-
abled in these procedures). Just as the root eventually reached the state UB
= LB = threshold, so will this agent, and the process will repeat itself until
all agents terminate.

It is important to note that, even though the parent terminated, this does
not mean that the search is over for the son. It is quite possible that the
parent had a value d1 just before it terminated, but then terminated after
assigning d2, causing its son to lose all its saved bounds (as the context is now
different). The son agent must re-search its search-space, incrementing lower
bounds of its values again from zero, until it solves the subproblem and knows
which of its values should be picked to result in an optimal solution, and then
terminate.

15.5 Special (and Surprising) Features of ADOPT

ADOPT is a very complex and difficult to follow algorithm. Its complexity
is probably related to the difficulty of running an asynchronous distributed
branch and bound algorithm. The maintenance of upper and lower bounds

15.5 Special (and Surprising) Features of ADOPT 179

for all agents asynchronously and the need for the asynchronous combination
of such local bounds to result in a correct algorithm that terminates, needs
some very complex mechanisms. Other DisCOP algorithms that were de-
scribed in Chapter 14 are much simpler at the cost of elegance. DPOP is com-
pletely synchronized and uses exponential size messages in the worst case (see
Section 14.3). OptAPO becomes more and more centralized as its mediators
accumulate larger mediation sessions and solve them centrally (Section 14.4).
As we will see in Chapter 16, an asynchronous (though sequential assignment)
algorithm can be designed for DisCOPs - the Asynchronous Forward Bound-
ing (AFB) algorithm. It will be shown to be of a superior performance to
ADOPT .

Due to ADOPT ’s complex structure and behavior, several interesting phe-
nomena can be shown to exist during its run. These are unexpected behaviors
that will be described in the next three subsections. The first behavioral fea-
ture is just surprising. The second, dependence on the structure of the pseudo-
tree, points to a possible drawback of the use of pseudo-trees. The third and
most important behavior feature of ADOPT is the fact that it can poten-
tially exchange an exponential number of messages. This is a very dangerous
property and will be clearly identified in Section 15.5.3.

15.5.1 Updating context from lower priority agents

An important issue with ADOPT that might be easily overlooked was men-
tioned in Section 15.4 when the procedure that handles COST messages was
described. The CurrentContext of the current agent is updated (partly at
least) from a COST message it received from its son down the tree. This
goes against the general idea of all asynchronous backtracking algorithms
(like ABT), that agents update their context by messages that originate with
higher priority agents. Let us present and explain briefly the logic behind this
abnormal updating.

Since in ADOPT agents only communicate with their parents or neighbors
(in the constraint graph), it is possible for an agent that is below another agent
in the tree not to receive VALUE messages from its ancestor (as these two
agents are not constrained directly).

Consider the example in Figure 15.3. It is easy to see that A3 does not
receive VALUE messages from A1 directly, but A5 does. When A5 reports
its LB and UB in a COST message, it computes those bounds based on its
CurrentContext at the time, which includes some assignment of A1. Different
assignments of A1 may produce a different LB and UB in A5. When receiving
the COST message from A5, A3 must keep the context in which they were
computed, and in fact it updates its own CurrentContext to contain the
assignment of A1 included in the received context. Imagine, for example, that
A4 and A1 are also constrained (not as shown in the figure). In such a case,
A1 would report VALUE messages to A4 as well. In principle, A4 may report
COST messages to A3 that are based on some other value of A1. This can

180 15 Asynchronous Optimization for DisCOPs

happen if the VALUE message to A4 is slightly delayed, and A4 reports its
COST based on the previous assignment. Naturally the bounds from the two
sons A4 and A5 cannot be added if they are based on contexts in which the
assignment of A1 is different.

A3 cannot know which assignment of A1 is more correct (more up-to-date).
It has no choice but to assume that A1 has changed its value assignment, and
update its CurrentContext with every COST message it receives. Until the
updated value of A1 arrives at A4, it would continuously receive COST from
both A4 and A5 and would alternate its context.

Fig. 15.3. An illustration of the VALUE and COST message flow in ADOPT . On
the left is a constraint problem, on the right a schema of messages sent by ADOPT
when solving the problem.

15.5.2 Pseudo-trees and concurrency of computation

The use of pseudo-trees is targeted at enhancing performance of distributed
search. However, it turns out to have an effect on concurrency in ADOPT (as
well as on other algorithms that are based on pseudo-trees).

Pseudo-trees, as described in Chapter 14, are a powerful ordering method
for enchancing performance. They enable a division of the problem into several

15.5 Special (and Surprising) Features of ADOPT 181

subproblems which can be solved independently. The solutions of all these
subproblems can be merged to produce a globally optimal solution. ADOPT
takes advantage of this concurrency since each agent informs all its constrained
descendants of its value assignments. A parent agent enables its children to
independently solve their individual subproblems in a recursive manner. The
lower and upper bounds they will report back can be merged (added) into a
bound for the parent agent itself.

This type of division produces some concurrency. While one child is work-
ing on solving its subproblem, its sibling can independently work on its own
subproblem. A good pseudo-tree is one that is very wide and shallow. This cre-
ates the maximal number of subproblems that can be independently solved.
Each of these subproblem can be optimally solved fairly quickly since it is
relatively small.

Let us take an extreme example to demonstrate the principle. In a con-
straint graph that looks like a star, a single agent in the middle is constrained
with all other agents, and those are the only constraints in the graph. If the
pseudo-tree would put that central agent as root, and all other agents as its
children we would get a tree of depth 2. Once the first agent picks its assign-
ment, all other agents can quickly compute the optimal value for themselves.
However, if we were to pick a different pseudo-tree, say one that looks like
a chain, then it would be harder to solve. Value changes at agents would in-
validate contexts below them, which may cause them to switch assignments,
causing more contexts below to become invalid, and so on. This ordering gives
far worse performance, even though it is still a pseudo-tree.

In other words, while many pseudo-trees exist, clearly some are better
than others. Unfortunately, there is an exponential number of pseudo-trees
(in the worst case), and the problem of finding the best one is considered
to be NP-hard [28]. Regardless of the method used to build the pseudo-tree,
the density of the constraint networks limits the possible trees. The higher
the density, the more constraints exist in the network, and the deeper the
optimal pseudo-tree becomes. In the extreme case of fully connected constraint
problems (p1 = 1.0), any pseudo-tree must in fact be a chain. This is easily
proven, since any tree with a node with two or more sons would not be a
pseudo-tree. Any two siblings are constrained (since p1 = 1) and obviously
there is no path from root to leaf that covers them both. Therefore, every
pseudo-tree for this problem must have a branching factor of no more than
one, or in other words, it is a chain.

To conclude, ADOPT uses pseudo-trees to enhance its concurrency. Find-
ing the optimal pseudo-tree can be hard. Furthermore, even the optimal tree
cannot always guarantee a great deal of concurrency. Even its optimal form
is dependent upon the constraint density of the problem. This important fact
about ADOPT ’s concurrent behavior will be easy to see in the comparative
empirical study of ADOPT and AFB in Chapter 16, where ADOPT will
perform very badly on hard instances of DisCOPs.

182 15 Asynchronous Optimization for DisCOPs

15.5.3 Network load of ADOPT

During empirical evaluations of ADOPT the network load, in the form of the
total number of messages sent, grows at a high exponential rate. This was not
reported in the original ADOPT paper [46]. This exponential growth can be
explained by the fact that in ADOPT , after receiving a message of any type,
the agent processes that message’s contents (regardless of the type of message)
and then calls the backtrack procedure. In this procedure, the agent may or
may not swap its value assignment, and then send both VALUE messages
to its lower priority neighbors and a COST message to its parent. Therefore,
following every message received, an average of two or more messages (COST
upwards, VALUE downwards) are sent. Even agents that are at the top (root)
or bottom (leafs) of the tree send a single message (either COST or VALUE)
following every message received.

It seems obvious that over time the number of messages in the system
would grow and at an exponential rate. Some agents replace one message in
the system with another, and other agents replace one message by several new
messages. One may hope that simply eliminating duplicate messages sent in
sequence by the same agent would solve this. However, if an agent does not
send a VALUE or a COST message because its previous message of that type
contained the exact same information, the algorithm becomes incorrect.

For example, in Figure 15.3, imagine that A5 learns of a new value as-
signment that was made by A1. Assume that agent A2 does not receive this
message due to a delay in the message pipeline between A1 and A2. A5 would
send a COST message to A3, which in turn would send a COST message to
A2. This COST message would contain information computed based on the
new value assigned by A1, but A2 would discard it as it is not consistent with
its context. When A2 learns of the new value of A1, it may decide not to
change its value, and if it does not send a VALUE message to A3, then A3

would not resend the needed COST message. In summary, identical messages
must always be sent and cannot be discarded. Consequently, the total number
of messages is expected to grow exponentially during the run of the ADOPT
algorithm.

16

Asynchronous Forward-Bounding

The Asynchronous Forward Bounding (AFB) algorithm for DisCOPs was
published in its full form in [22]. The algorithm incorporates concepts and
techniques from two former algorithms.

• AFB uses the idea of asynchronous lookahead of the AFC algorithm
(see Chapter 6). It uses a CPA messages framework and time-stamping of
messages.

• The core of the AFB search process is based on the general branch and
bound algorithm. This makes it a COP solver (see Chapter 3).

As before, for simplicity of exposition we only handle DisCOPs in which each
agent has a single variable.

16.1 AFB - Overview

The AFB algorithm passes a single, most up-to-date current partial assign-
ment among the agents. Agents assign their variables only when they hold
the up-to-date CPA. The CPA is a unique message that is passed between
agents, and carries the partial assignment that agents attempt to extend into
a complete and optimal solution by assigning their variables on it. The CPA
also carries the accumulated cost of constraints between all assignments it
contains, as well as a unique time stamp.

Only one agent performs an assignment on a CPA at any time. Copies of
the CPA are sent forward to unassigned agents and are concurrently processed
by multiple agents. Each unassigned agent computes a lower bound on the cost
of assigning a value to its variable, and sends this bound back to the agent
which performed the assignment. The assigning agent uses these bounds to
prune subspaces of the search space which do not contain a full assignment
with a cost lower than the best full assignment found so far.

More specifically, every agent that adds its assignment to the CPA sends
forward copies of the CPA, in messages we term FB_CPA, to all agents

184 16 Asynchronous Forward-Bounding

whose assignments are not yet on the CPA. An agent receiving an FB_CPA
message computes a lower bound on the cost increment caused by adding an
assignment to its variable. This estimated cost is sent back to the agent who
sent the FB_CPA message via FB_ESTIMATE messages. The computation
of this bound is detailed in Section 16.2.

16.2 Lower Bound Estimation for the Cost Increment

The computation of the lower bound on the cost increment caused by adding
an assignment to the agent’s local variable is done as follows.

Denote by cost((i,v), (j,u)) the cost of assigning Ai = v and Aj = u.
For each agent Ai and each value in its domain v ∈ Di, we denote the
minimal cost of the assignment (i,v) incurred by an agent Aj by hj(v) =
minu∈Dj

(cost((i, v), (j, u))). We define h(v), the total cost of assigning the
value v, to be the sum of hj(v) over all j > i. Intuitively, h(v) is a lower
bound on the cost of constraints involving the assignment Ai = v and all
agents Aj such that j > i. Note that this bound can be computed once per
agent, since it is independent of the assignments of higher priority agents.

An agent Ai which receives an FB_CPA message can compute for every
v ∈ Di both the cost increment of assigning v as its value, i.e., the sum of
the cost of the conflicts v has with the assignments included in the CPA,
and h(v). The sum of these is denoted by f(v). The lowest calculated f(v)
among all values v ∈ Di is chosen to be the lower bound estimation on the
cost increment by agent Ai.

Figure 16.1 presents a constraint network in which A1 already assigned the
value v1 and A2, A3, A4 are unassigned. Let us assume that the cost of every
constraint is one. The cost of v3 will increase by one due to its constraint with
the current assignment, thus f(v3) = 1. Since v4 is constrained with both v8

and v9, assigning this value will trigger a cost increment when A4 performs an
assignment. Therefore h(v4) = 1 is an admissible lower bound of the cost of
the constraints between this value and lower priority agents. Since v4 does not
conflict with assignments on the CPA, f(v4) = 1 as well. f(v5) = 3 because
this assignment conflicts with the assignment on the CPA and in addition
conflicts with all the values of the two remaining agents.

Since h(v) takes into account only constraints of Ai with lower priority
agents (Aj s.t. j > i), unassigned lower priority agents do not need to es-
timate their cost of constraints with Ai. Therefore, these estimations can be
accumulated and summed up by the agent which initiated the forward bound-
ing process to compute a lower bound on the cost of a complete assignment
extended from the CPA. Thus, asynchronous forward bounding enables early
detection of partial assignments that cannot be extended into complete as-
signments with a cost smaller than the known upper bound, and to initiate
backtracks as early as possible.

16.2 Lower Bound Estimation for the Cost Increment 185

Algorithm 16.1: Main procedures of the AFB algorithm
procedure init:
1. B ← ∞
2. if (Ai = A1)
3. generate_CPA()
4. assign_CPA()

when received (FB_CPA, Aj , PA)
5. f ← estimation based on the received PA.
6. send (FB_ESTIMATE, f, PA, Ai) to Aj

when received (CPA_MSG, PA)
7. CPA ← PA
8. TempCPA ← PA
9. if TempCPA contains an assignment to Ai, remove it
10. if (TempCPA.cost ≥ B)
11. backtrack()
12. else
13. assign_CPA()

when received (FB_ESTIMATE, estimate, PA , Aj)
14. save estimate
15. if (CPA.cost + all saved estimates) ≥ B)
16. assign_CPA()

when received (NEW_SOLUTION, PA)
17. B_CPA← PA
18. B ← PA.cost

procedure assign_CPA:
19. clear estimations
20. if CPA contains an assignment Ai = w, remove it
21. iterate (from last assigned value) over Di until found

v ∈ Di s.t. CPA.cost + f(v) < B
22. if no such value exists
23. backtrack()
24. else
25. assign Ai = v
26. if CPA is a full assignment
27. broadcast (NEW_SOLUTION, CPA)
28. B ← CPA.cost
29. assign_CPA()
30. else
31. send(CPA_MSG, CPA) to Ai+1

32. forall j > i
33. send(FB_CPA, Ai, CPA) to Aj

procedure backtrack:
34. clear estimates
35. if (Ai = A1)
36. broadcast(TERMINATE)
37. else
38. send(CPA_MSG, CPA) to Ai−1

186 16 Asynchronous Forward-Bounding

Fig. 16.1. A simple DisCOP, demonstration

16.3 AFB - Algorithm Description

The AFB algorithm is run on each of the agents in the DisCOP. Each agent
first calls the procedure init and then responds to messages until it receives
a TERMINATE message. The algorithm is presented in Algorithm 16.1. The
computation of bounds, and the time-stamping mechanism are not shown, as
they are explained in the text.

In the initialization, each agent updates B to be the cost of the best full
assignment found so far and, since no such assignment was found, it is set to
infinity (line 1). Only the first agent (A1) creates an empty CPA and then
begins the search process by calling assign_CPA (lines 3-4), in order to find
a value assignment for its variable.

An agent receiving a CPA (when received CPA_MSG), first makes sure
it is relevant. The time stamp mechanism by [48] is used to determine the
relevance of the CPA (for more details on this mechanism see Section 16.4).

If the CPA’s time stamp reveals that it is not the most up-to-date CPA,
the message is discarded. In such a case, the agent processing the message
has already received a message implying that an assignment of some agent
which has a higher priority than itself has been changed. When the message
is not discarded, the agent saves the received PA in its local CPA variable
(line 7). Then the agent checks that the received PA (without an assignment

16.3 AFB - Algorithm Description 187

to its own variable) does not exceed the allowed cost B (lines 8-10). If it does
not exceed the bound, it tries to assign a value to its variable (or replace its
existing assignment if it has one already) by calling assign_CPA (line 13).
If the bound is exceeded, a backtrack is initiated (line 11) and the CPA is sent
to a higher priority agent since the cost is already too high (even without an
assignment to its variable).

Procedure assign_CPA attempts to find a value assignment for the cur-
rent agent within the bounds of the current CPA. First, estimates related to
prior assignments are cleared (line 19). Next, the agent attempts to assign
every value in its domain it did not already try. If the CPA arrived without
an assignment to its variable, it tries every value in its domain. Otherwise, the
search for such a value is continued from the value following the last assigned
value. The assigned value must be such that the sum of the cost of the CPA
and the lower bound of the cost increment caused by the assignment will not
exceed the upper bound B (lines 20-22). If no such value is found, the assign-
ment of some higher priority agent must be altered, and so backtrack is called
(line 23). Otherwise, the agent assigns the selected value on the CPA.

When the agent is the last agent (An), a complete assignment has been
reached with an accumulated cost lower than B, and it is broadcasted to all
agents (line 27). This broadcast will inform the agents of the new bound for
the cost of a full assignment, and cause them to update their upper bound B.

The agent holding the CPA (An) continues the search by updating its
bound B and calling assign_CPA (line 29). The current value will not be
picked by this call, since the CPA’s cost with this assignment is now equal to
B, and the procedure demands the cost to be lower than B. So the agent will
continue the search, testing other values, and backtracking if they do not lead
to further improvement.

When the agent holding the CPA is not the last agent (line 30), the CPA
is sent forward to the next unassigned agent, for additional value assignment
(line 31). Concurrently, forward bounding requests (i.e., FB_CPA messages)
are sent to all lower priority agents (lines 32-33).

An agent receiving a forward bounding request (when received FB_CPA)
from agent Aj , again uses the time-stamp mechanism to ignore irrelevant
messages. Only if the message is relevant, does the agent compute its estimate
(lower bound) of the cost incurred by the lowest cost assignment to its variable
(line 5). The exact computation of this estimation was described above [it is
the minimal f(v) over all v ∈ Di]. This estimation is then attached to the
message and sent back to the sender as an FB_ESTIMATE message.

An agent receiving a bound estimation (when received FB_ESTIMATE)
from a lower priority agent Aj (in response to a forward bounding message)
ignores it if it is an estimate to an already abandoned partial assignment
(identified by using the time-stamp mechanism). Otherwise, it saves this es-
timate (line 14) and checks if this new estimate causes the current partial
assignment to exceed the bound B (line 15). In such a case, the agent calls

188 16 Asynchronous Forward-Bounding

assign_CPA (line 16) in order to change its value assignment (or backtrack
if a valid assignment cannot be found).

The call to backtrack is made whenever the current agent cannot find a
valid value (i.e., below the bound B). In such a case, the agent clears its saved
estimates, and sends the CPA backwards to agent Ai−1 (line 38). If the agent
is the first agent (with nowhere to backtrack to), the terminate broadcast ends
the search process in all agents (line 36). The algorithm then reports that the
optimal solution has a cost of B, and the full assignment with such a cost is
B_CPA.

16.4 The Time-Stamp Mechanism

As mentioned previously, AFB uses the time-stamp mechanism of [48] to de-
termine the relevance of the CPA. The requirements from this mechanism
are that, given two messages with two different partial assignments, it must
determine which one of them is obsolete. An obsolete partial assignment is
one that was abandoned by the search process because one of the assigned
agents has changed its assignment. This requirement is accomplished by the
time-stamping mechanism in the following manner. Each agent keeps a local
running-assignment counter. Whenever it performs an assignment it incre-
ments its local counter. Whenever it sends a message containing its assign-
ment, the agent copies its current counter onto the message. Each message
holds a vector of time stamps, containing the counters of the agents it passed
through. The i-th element of the vector corresponds to Ai’s counter. This vec-
tor is in fact the time stamp. A lexicographical comparison of two such vectors
will reveal which time stamp is more up-to-date.

Each agent saves a copy of what it knows to be the most up-to-date time
stamp. When receiving a new message with a newer time stamp, the agent
updates its local saved best time stamp. Suppose agent Ai receives a message
with a time stamp that is lexicographically smaller than the locally saved best,
by comparing the first i−1 elements of the vector. This means that the message
was based on a combination of assignments which was already abandoned and
this message is discarded. Only when the message’s time stamp in the first
i − 1 elemental is equal or greater than the locally saved best time stamp is
the message processed further.

The vector’s counters might appear to require a lot of space, as the number
of assignments can grow exponentially in the number of agents. However, if
the agent (Ai) resets its local counter to zero each time the assignments of
higher priority agents are altered, the counters will remain small (log of the
size of the value domain).

16.5 AFB - Proof of Correctness 189

16.5 AFB - Proof of Correctness

In order to prove correctness for AFB two claims must be established. First,
that the algorithm terminates and second that when the algorithm terminates
its global upper bound B is the cost of the optimal solution. To prove ter-
mination one can show that the AFB algorithm never goes into an endless
loop. To prove the last statement it is enough to show that the same partial
assignment cannot be generated more than once.

Lemma 16.5.1 The AFB algorithm never generates two identical CPAs.

Assume by negation that Ai is the highest priority agent (first in the order
of assignments) that generates a partial assignment CPA for the second time.
The replacement of an assignment can only be triggered by one of two mes-
sages arriving at Ai from a lower priority agent Aj (j > i); either a backtrack
CPA message, or an FB_ESTIMATE message. In the first case the next
assignment on the CPA will be generated by the procedure assign_CPA.
Each of the values in the domain of Ai is considered exactly once. When the
agent’s domain is exhausted the agent backtracks and under the above as-
sumption will never receive the same partial assignment again. If the received
message is an estimate that clashes with the upper bound (e.g., the second
case), a new CPA is generated. The generated CPA is a clone of the last CPA
the agent received from a higher priority agent. Only values which were not
considered on the previous CPA are left in its current domain. Therefore, the
situation with the new CPA is similar to the first case. Termination follows
immediately from Lemma 16.5.1.

Next we prove that, upon termination, the complete assignment, corre-
sponding to the optimal solution, is in B_CPA (see Algorithm 16.1). There
is only one point of termination for the AFB algorithm, in procedure back-
track. So, one needs to prove that during search no partial assignment that
can lead to a solution of lower cost than B is discarded. But, this fact is im-
mediate, because the only place in the code where values are discarded is in
the third line of procedure assign_CPA (line 21). Within this procedure,
values are discarded only when the calculated lower bound of the value being
considered is higher than the current bound on the cost of a global solution.
Clearly, this cannot lead to a discarding of a lower cost global solution.

One still needs to show that whenever the algorithm calls the proce-
dure assign_CPA, it does not loose a potential lower cost solution. There
are altogether four places in the algorithm where a call to procedure as-
sign_CPA is made. One is in procedure init, which is irrelevant. The three
relevant calls are in the code performed when receiving a CPA or receiving
an FB_ESTIMATE, and in the procedure assign_CPA itself.

The third case is trivially correct. Before calling the procedure the global
bound B is updated and the corresponding complete solution is stored. Conse-
quently, the current solution is not lost. The first two calls (see Algorithm 16.1)
appear in the last lines of the procedures processing the two messages. When

190 16 Asynchronous Forward-Bounding

processing an FB_ESTIMATE message, the call to assign_CPA happens
after the lower bound of the current value has been tested to exceed the global
bound B (line 15). This is correct, since the current partial solution cannot
be extended to a lower cost solution. The last call to assign_CPA occurs in
the last line of processing a received CPA message. Clearly, this call extends
a shorter partial solution and does not discard a value of the current agent.
This completes the correctness proof of the AFB algorithm. �

16.6 Concurrency in AFB

At any point in time during the run of AFB, there is a single most-up-to-
date CPA in the system. Each agent adds an assignment when it holds it,
so assignments are performed sequentially. One might think that this would
necessarily result in poor performance, as the search process does not try
to take advantage of the existing multiple computational resources available
to it. The concurrency of AFB comes from the use of the forward-bounding
mechanism. While the CPA is held by one agent, many copies of it are sent
forward, and a collection of agents concurrently compute lower bounds for that
CPA. When the CPA advances to the next agent, again this process repeats,
and so the unassigned agents are constantly kept working, either when they
receive the CPA, or when they need to compute bounds for some other partial
assignment.

This approach is quite different from that used by asynchronous assign-
ments algorithms such as ADOPT or ABT. In these algorithms the search
process attempts to perform assignments concurrently by the collection of
agents. Since many agents are assigning their variables simultaneously, there
is a probability that must be handled by the algorithm, that the current
agent’s view of assignments made by other agents is incorrect. This is due to
the fact that agents concurrently alter their assignments. The algorithm must
be able to deal with this uncertainty.

One can say about the advantage of asynchronous assignments algorithms,
that either the agent’s information is accurate and not waiting for a sequen-
tial process to reach the current agent is saving time, or the agent’s infor-
mation is inaccurate and its previous computation will not be useful once
the updated information arrives. So it may appear that asynchronous as-
signments algorithms would be better than sequential assignment algorithms.
However, asynchronously assigning algorithms must also deal with inconsis-
tencies caused by message delay. For example, if several higher priority agents
change their assignments at some lower priority agent, only some of the mes-
sages are received (the others are delayed) and computation is done based
on an inconsistent agent view. This type of scenario, which has computation
based on an inconsistent partial assignment, is completely avoided in sequen-
tial assigning algorithms.

16.6 Concurrency in AFB 191

To conclude, The AFB algorithm includes concurrent computation by mul-
tiple agents without having to deal with the uncertainty that comes with
asynchronous assignments. Each agent that receives a message containing a
partial assignment knows with certainty that the given partial assignment is
the one it was supposes to receive, and not a result of a network delay incon-
sistency. Therefore, AFB has both concurrent computation and the certainty
of working with consistent partial assignments.

17

Extending AFB - BackJumping

In this chapter we present the AFB-BJ algorithm. AFB-BJ is an extension of
the AFB algorithm that incorporates a backjumping mechanism for improved
performance. Sometimes during the run of the AFB search, the CPA is back-
tracked to some agent Ai after it was determined to be a dead end. Ai then
attempts to replace its assignment with another assignment, and if successful
passes the CPA to the next agent Ai+1. Ai would repeat this process whenever
the CPA is backtracked from Ai+1, until it has attempted to extend the CPA
with every value in its domain of values, and only when it has tested them all
would it backtrack the CPA to Ai−1. The proposed mechanism for backjump-
ing allows agents such as Ai+1 to detect situations in which the CPA can be
sent directly to agents prior to Ai without missing out on potential solutions.
As can be seen from the above description, this avoids useless computation,
as Ai explores its remaining values.

Backjumping is widely used in CSP algorithms. The conflict-based back-
jumping algorithm (CBJ) [51] is a proven example of a speed up mechanism
for centralized CSPs [14]. In CBJ, conflict sets hold the culprit variables re-
sponsible for the elimination of values from each variable’s current domain.
When backtracking is required, these conflict sets can be used to identify the
culprit variables responsible for the dead end, and therefore allow backjump-
ing directly to the latest variable that was assigned among those variables.
Graph-based backjumping [16] is another form of backjumping, in which back-
jumping possibilities are inferred from the constraint graph.

Recently, conflict-based backjumping was also applied to MAX-CSPs [76].
The extension of backjumping to optimization problems is not trivial, since
culprit variables are harder to detect. When accumulating explanations for
eliminated values in constrained optimization problems, many values involved
in some constraints might be part of the optimal solution. Bounds for each
value as well as the current lower and upper bounds must be used to detect the
culprit variables. To the best of the author’s knowledege, no other DisCOP
algorithm to date uses any form of backjumping mechanism.

194 17 Extending AFB - BackJumping

17.1 Adding Value Ordering Heuristics

Before adding a backjump mechanism, one first needs to add a value or-
dering heuristic. A value ordering heuristic is a heuristic for reordering the
domain values of agents. Since agents pick their next assignment to be the
next untested value in their value domain, ordering these values in different
ways has the potential to produce different performances, as shown for exam-
ple in [14]. A good value ordering heuristic for AFB is called min-cost and the
resulting version of the algorithm is called accordingly AFB-minC. The min-
cost heuristic arranges the values of an agent by the cost of each value with
respect to the assignments of higher priority agents on the CPA. Each agent
performs this reordering whenever it needs to perform an assignment. Since
the ordering cannot change without a change in the assignment of higher pri-
ority agents, no reordering is performed as long as these assignments remain
fixed. Once an updated CPA arrives, containing new assignments for higher
priority agents, the agent reorders its values and the ordering remains until
the next time higher priority agents change assignments (in other words, until
a backtrack is performed).

Since AFB does not assume any special ordering of the values, it remains
correct and complete with any specific ordering. To see why the algorithm
remains correct, observe that an obsolete ordering is in a one-to-one corre-
spondence to a time stamped CPA, i.e., to an assignment of higher priority
agents. Any message received that is related to an obsolete ordering and is
discarded is also related to an obsolete time stamped CPA. As long as the cur-
rent CPA remains valid, the value ordering is fixed and there is no possibility
of missing exploration of values due to reordering during search.

17.2 Backjumping - Key Concepts

In both centralized and distributed CSPs, backjumping can be accomplished
by maintaining data structures that will allow an agent to deduce who is the
latest agent (in the order in which assignments were made) whose changed
assignment could possibly lead to a solution. Once such an agent is found,
the assignments of all following agents are unmade and the search process
backjumps to that agent [23, 44, 51].

A similar process can be designed for branch and bound based solvers
for COPs and DisCOPs. Consider a sequence of assignments by the agents
A1, A2, A3, A4, A5 where A5 determined that none of its possible value assign-
ments can lead to a full assignment with a cost lower than the cost of the best
full assignment found so far. Clearly, A5 must backtrack.

In chronological backtracking, the search process would simply return to
the previous agent, namely A4, and have it change its assignment. However,
A5 can sometimes determine that no value change of A4 would suffice to reach
a full assignment of a lower cost. Intuitively, A5 can safely backjump to A3, if

17.2 Backjumping - Key Concepts 195

it can compute a lower bound on the cost of a full assignment extended from
the assignments of A1, A2, and A3, and show that this bound is greater or
equal to the cost of the best full assignment found so far. This is the intuitive
basis of how backjumping can be added to AFB.

More formally, let us consider a state in which Ai decides to backtrack,
and the cost of the best full assignment found so far is B (i.e., B is the upper
bound of the current state of the search). The current partial assignment
includes the assignments of agents A1, ..., Ai−1.

Definition 17.1. CPA[1..k] is the set of assignments made by agents
A1, . . . , Ak in the current partial assignment. We define CPA[1..0] = {}.

Definition 17.2. FA[k] is the set of all full assignments, which include all
the assignments appearing in CPA[1..k]. For example, FA[2] contains all full
assignments in which both A1 and A2 have the same value assignments as
they do in the current partial assignment. Naturally, FA[0] is the set of all
possible full assignments.

Upon a backtrack operation, instead of simply backtracking to the previ-
ous agent, Ai performs the following actions. It computes a lower bound on
the cost of any full assignment in FA[i-2]. If this bound is smaller than B, it
backtracks to Ai−1 just like it would do in chronological backtracking. How-
ever, if this bound is greater or equal to B, then backtracking to Ai−1 would
do little good. No value change of Ai−1 alone could result in a full assignment
of cost lower than B. As a result, Ai knows it can safely backjump to Ai−2.
It may be possible for Ai to backjump even further, depending on the lower
bound on the cost of any full assignment in FA[i-3]. If this bound is smaller
than B, it backjumps to Ai−2. Otherwise, it knows it can safely backjump to
Ai−3. Similar checks can be made about the necessity to backjump further.

The backjumping procedure relies on the computation of lower bounds
for sets of full assignments (FA[k]). Next, we will show how can Ai compute
such lower bounds. Let us define the notions of past, local and future costs in
Definitions 17.3, 17.4, and 17.5.

Definition 17.3. PC (past costs) is a vector of size n+1, in which the k−th
element (0 ≤ k ≤ n) is equal to the cost of CPA[1..k].

Definition 17.4. LC(v) (local costs) is a vector of size n + 1 computed by
Ai and held by it, in which the k − th element (0 ≤ k ≤ n) is

LC(v)[k] =
∑

(Aj ,vj)∈CPA s.t. j≤k

cost(Ai = v,Aj = vj)

Since the CPA held by Ai only includes assignments of A1, . . . , Ai−1, it follows
that

(∀j ≥ i)LC(v)[i− 1] = LC(v)[j]

Intuitively, LC(v)[i] is the accumulated cost of the value v of Ai, with respect
to all assignments in CPA[1..i].

196 17 Extending AFB - BackJumping

Definition 17.5. FCj(v) (future costs) is a vector of size n + 1 in which the
k− th element (0 ≤ k ≤ n) contains a lower bound on the cost of assigning a
value to Aj with respect to the partial assignment CPA[1..k]. Assume that this
structure is held by agent Ai. If k ≥ i, then CPA[1..k] contains the assignment
Ai = v. For k < i the value v of Ai is irrelevant as it does not appear in
CPA[1..k].

The above vectors provide additive lower bounds on full assignments that
start with the current CPA up to k, FA[k]. PC[k] is the exact cost of the
first k assignments, LC(v)[k] is the exact cost of the assignment Ai = v, and∑

j>i FCj(v)[k] is a lower bound on the assignments of Ai+1, ..., An. There-
fore, the sum

FALB(v)[k] = LC(v)[k] + PC[k] +
∑
j>i

FCj(v)[k]

is a full assignment lower bound on the cost of any full assignment extended
from CPA[1..k] in which Ai = v.

FA[k] contains all full assignments extended from CPA[1..k], and is not
limited to assignments in which Ai = v. If we go over all FALB(v)[k], for all
possible values v ∈ Di we produce a lower bound on any assignment in FA[k].

Definition 17.6. FALB[k] = minv∈Di
(FALB(v)[k]).

FALB[k] is a lower bound on the cost of any full assignment that is extended
from CPA[1..k].

In a distributed branch and bound algorithm, this bound is computed by
Ai. PC, the cost of previous agents, is sent along with their value assignment
messages to Ai. LC(v), the cost of assigning v to Ai, can be computed by
Ai. Ai requests all agents ordered after it, Aj (j > i), to compute FCj and
send the results back to Ai. This is part of the AFB mechanism for forward
bounding, as explained in Chapter 16. In the AFB algorithm [22] Ai already
requests unassigned agents to compute lower bounds on the CPA and send
back the results. The additional bounds needed for backjumping can easily be
added to the existing AFB framework.

17.3 A Backjumping Example

To demonstrate the backjumping possibility, consider the DisCOP in Fig-
ure 17.1. Let us assume that the search begins with A1 assigning a as its
value and sending the CPA forward to A2. A2, A3, A4, and A5 all assign the
value a and we get a full assignment with cost 12. The search continues, and
after fully exploring the sub space in which A1 = a,A2 = a, the best as-
signment found is A1 = a,A2 = a,A3 = b, A4 = a,A5 = b with a total cost
of B = 6. Assume that A3 is now holding the CPA after receiving it from

17.3 A Backjumping Example 197

Fig. 17.1. An example DisCOP for backjumping

some future agent (A4 or A5). A3 has exhausted its value domain and must
backtrack. It computes:

FALB(a)[1] = PC[1] + LC(a)[1] + (FC4(a)[1] + FC5(a)[1])

= 0 + 2 + (3 + 2) = 7

FALB(b)[1] = PC[1] + LC(b)[1] + (FC4(b)[1] + FC5(b)[1])

= 0 + 1 + (3 + 2) = 6

FALB[1] = min(FALB(a)[1], FLAB(b)[1]) = 6

FALB[1] ≥ B, therefore A3 knows that any full assignment extended from
{A1 = a} would cost at least 6. A full assignment with that cost was already
discovered, so there is no need to explore the rest of this sub-space, and it
can safely backjump the search process back to A1, to change its value to b.
Backtracking to A2 leaves the search process within the {A1 = a} sub space,
which A3 knows cannot lead to a full assignment with a lower cost.

198 17 Extending AFB - BackJumping

17.4 The AFB-BJ Algorithm

The AFB-BJ algorithm is run on each of the agents in the DisCOP. Each
agent first calls the procedure init and then responds to messages until it re-
ceives a TERMINATE message. The algorithm is presented in Algorithm 17.1
and Algorithm 17.2. As in pure AFB, a time-stamping mechanism is used on
all messages. Timestamping is used to determine which messages are relevant
and which are obsolete. For simplicity, we choose to omit the description of
this mechanism from the pseudo-code, referring the reader to the descrip-
tion in Chapter 16. For the same reason we choose to omit the pseudo-code
detailing the calculation of LC, PC, FC, and FALB.

Algorithm 17.1: Initialization and message-handling procedures of
AFB-BJ

procedure init:
1. B ← ∞
2. if (Ai = A1)
3. generate_CPA()
4. assign_CPA()

when received (FB_CPA, Aj , PA)
5. V ← estimation vector for each PA[1..k] (0 ≤ k ≤ n)
6. send (FB_ESTIMATE, V , PA, Ai) to Aj

when received (CPA_MSG, PA, Aj)
7. CPA ← PA
8. TempCPA ← PA
9. if (j = i− 1)
10. ∀j re-initialize FCj(v)
11. reorder domain values v ∈ Di by LC(v)[i] (from low to high)
12. if (TempCPA contains an assignment to Ai) remove it
13. if (TempCPA.cost ≥ B)
14. backtrack()
15. else
16. assign_CPA()

when received (FB_ESTIMATE, V , PA , Aj)
17. FCj(v) ← V
18. if (FALB(v)[i] ≥ B)
19. assign_CPA()

when received (NEW_SOLUTION, PA)
20. B_CPA← PA
21. B ← PA.cost

17.4 The AFB-BJ Algorithm 199

Algorithm 17.2: The assigning and backtracking procedures of AFB-
BJ

procedure assign_CPA:
22. if CPA contains an assignment Ai = w, remove it
23. iterate (from last assigned value) over Di until the first value satisfying

v ∈ Di s.t. CPA.cost + f(v) < B
24. if no such value exists
25. backtrack()
26. else
27. assign Ai = v
28. if CPA is a full assignment
29. broadcast (NEW_SOLUTION, CPA)
30. B ← CPA.cost
31. assign_CPA()
32. else
33. send(CPA_MSG, CPA, Ai) to Ai+1

34. forall j > i
35. send(FB_CPA, Ai, CPA) to Aj

procedure backtrack:
36. if (Ai = A1)
37. broadcast(TERMINATE)
38. else
39. j ← backtrackTo()
40. remove assignments of Aj+1, .., Ai from CPA
41. send(CPA_MSG, CPA, Ai) to Aj

function backtrackTo:
42. for j = i− 1 downto 1
43. foreach v ∈ Di

44. if (FALB(v)[j-1] + (PC[j] - PC[j-1]) < B)
45. return j
46. broadcast(TERMINATE)

The algorithm starts by each agent calling init and then awaiting messages
until termination. At first, each agent updates B to be the cost of the best
full assignment found so far and, since no such assignment was found, it is
set to infinity (line 1). Only the first agent (A1) creates an empty CPA and
then begins the search process by calling assign_CPA (lines 3-4), in order
to find a value assignment for its variable.

An agent receiving a CPA (when received CPA_MSG), checks the time
stamp associated with it. An out-of-date CPA is discarded. When the message
is not discarded, the agent saves the received PA in its local CPA variable (line
7). If the CPA was received from a higher priority agent, the estimations of

200 17 Extending AFB - BackJumping

future agents in FCj are no longer relevant and are discarded, and the domain
values must be reordered by their updated cost (lines 9-11). Then, the agent
attempts to assign its next value by calling assign_CPA (line 16) or to
backtrack if needed (line 14).

Procedure assign_CPA attempts to find a value assignment for the cur-
rent agent. The assigned value must be such that the sum of the cost of the
CPA and the lower bound of the cost increment caused by the assignment will
not exceed the upper bound B (lines 23). If no such value is found, the as-
signment of some higher priority agent must be altered, so backtrack is called
(line 25). When a full assignment is found which is better than the best full
assignment known so far, it is broadcast to all agents (line 29). After succeed-
ing to assign a value, the CPA is sent forward to the next unassigned agent
(line 33). Concurrently, forward-bounding requests (i.e., FB_CPA messages)
are sent to all lower priority agents (lines 34-35).

An agent receiving a bound estimation (when received FB_ESTIMATE)
from a lower priority agent Aj (in response to a forward bounding message)
ignores it if it is an estimate to an already abandoned partial assignment (iden-
tified using the time stamp mechanism). Otherwise, it saves this estimate (line
17) and checks if this new estimate causes the current partial assignment to
exceed the bound B (line 18). In such a case, the agent calls assign_CPA
(line 19) in order to change its value assignment (or backtrack if a valid as-
signment cannot be found).

The call to backtrack is made whenever the current agent cannot find a
valid value (i.e., below the bound B). In such a case, the agent calls back-
trackTo() to compute to which agent the CPA should be sent, and backtracks
the search process (by sending the CPA) back to that agent. If the agent is
the first agent (with nowhere to backtrack to), the terminate broadcast ends
the search process in all agents (line 37). The algorithm then reports that the
optimal solution has a cost of B, and that the full assignment corresponding
to this cost is B_CPA.

The function backtrackTo() computes to which agent the CPA should be
sent. This is the kernel of the backjumping (BJ) mechanism. It goes over all
candidates, from j−1 down to 1, looking for the first agent it finds that has a
chance of reaching a full assignment with a lower cost than B. FALB(v)[j-1] is
a lower bound on the cost of a full assignment extended from CPA[1..j-1], and
PC[j]-PC[j-1] is the cost added to that CPA by Aj ’s assignment. Since Aj

picked the lowest cost value in its domain (its domain was ordered in line 11),
the addition of these two components produces a more accurate lower bound
on the cost of a full assignment extended from CPA[1..j-1]. If this bound is
not smaller than B, then surely any combination of assignments made by Aj

and any following agent could only raise the cost, which is already too high. In
case even backjumping back to A1 does not prove helpful, the search process
is terminated (line 46).

17.5 AFB-BJ - Proof of Correctness 201

17.5 AFB-BJ - Proof of Correctness

In order to prove the correctness of the AFB_BJ algorithm we first prove
the correctness of the proposed backjumping method and then show that
its combination with AFB does not violate AFB’s correctness as proven in
Section 16.5.

In order to prove the correctness of the backjumping method one need
only show that none of the agents’ assignments that the algorithm backjumps
over can lead to a solution with a lower cost than the current upper bound.
The condition for performing backjumping over Aj (line 44) is that the lower
bound on the cost of a full assignment extended from the assignments of
A1 . . . Aj−1 and of the assignment cost of Aj exceeds the global upper bound
B. Since Aj picked the lowest cost value in its remaining domain (as the
domain is ordered), extending the assignments of A1 . . . Aj−1 must lead to
a cost greater than or equal to B. Therefore, backjumping to Aj−1 cannot
discard any potentially lower cost solutions. This completes the correctness
proof of the AFB−BJ backjumping [e.g., function backtrackTo()] method.

Assuming the correctness of AFB as proven in Section 16.5, in order to
prove the correctness of the composite algorithm AFB-BJ it is enough to prove
the consistency of the lower bounds computed by the agents in AFB-BJ. The
lower bounds computed by AFB-BJ include FC, LC, and PC as described in
Section 17.2. PC is contained in the CPA, and is updated by any agent that
receives it and adds an assignment (not shown in the code). LC(v) is computed
by the current agent Ai whenever it assigns v as its value assignment. FCj is
computed by Aj in line 5 (in Algorithm 17.1), and is sent back to Ai in line 6.
Ai receives and saves this in line 17. The lower bounds contained inside these
vectors are correct because PC was exactly calculated when holding the CPA,
LC was exactly calculated by the current agent Ai, and the bounds in FCj

are the same bounds computed in AFB which were proven to be correct lower
bounds for the assignment of Aj in Section 16.5. The FCj bounds are accurate
and based on the current partial assignment since the time stamp mechanism
prevents processing of bounds which are based on an obsolete CPA. Whenever
the CPA is altered by some higher priority agent, the previous bounds are
cleared (line 10 of Algorithm 17.1). �

18

Empirical Evaluation of DisCOP algorithms

To evaluate DisCOP algorithms the simplest approach is to build on expe-
rience from centralized COPs (see Chapter 3). Centralized constraints op-
timization problems are many times evaluated on Max-CSPs [33, 36]. The
distributed version of Max-CSPs are termed MaxDisCSP and are DisCOPs
for which all costs are either zero or one. These problems can be randomly
generated similarly to randomly generated CSPs by selecting the number of
agents n (each with a single variable). Each variable is given a domain of fixed
size k. A probability p1 is set and is used to decide on the existence of a con-
straint between any pair of agents (this sets an average constraint density). For
each constraint between two agents, each pair of value assignments is assigned
a cost of 1 with a fixed probability of p2. By keeping the same n, k, p1 and
varying p2, one generates a set of random problems with increasingly tighter
constraints. This family of MaxCSPs were used to evaluate lookahead search
algorithms for centralized COPs in [33, 36].

When evaluating distributed algorithms it is best to simulate the dis-
tributed system. Running experiments on multiple machines is both costly
and has the disadvantage that the possibility of repeating experiments under
the exact same conditions is nonexistent. The simulator uses threads, where
each thread plays the role of a single agent, and the agents (threads) exchange
messages using standard Java routines. We use an asynchronous simulator,
placing no limitation on the execution of the agents (with no need to wait
for the next cycle to read the next message, each agent works at its own
pace). This method faithfully measures the concurrent run of asynchronous
algorithms (see Chapter 10).

It is important to note here that DisCOP algorithms have been empirically
evaluated on very small and easy problems. In the main paper on ADOPT [47]
the algorithm is tested on 3-coloring problems, where the independent vari-
able is the number of agents. In other words, the difficulty of the problems
remains fixed. In addition, the measurement of the algorithm’s performance
uses the number of cycles on a synchronous simulator. As was shown in Chap-
ter 10, this is a very problematic measure that does not capture the concur-

204 18 Empirical Evaluation of DisCOP algorithms

rent performance of DisCOP algorithms. In the main paper on the DPOP
algorithm [49] (in Section 14.4) the algorithm is tested on small instances
of the meetings scheduling problem (MSP), which again is far from a hard
instance of DisCOPs. In the following section the AFB algorithm (in both
versions) is compared to ADOPT and all algorithms are tested on a large
family of MaxDisCSP problems. The combination of a wide range of diffi-
culty of DisCOPs, an asynchronous simulator, and concurrent performance
measures, contribute to the importance of this experimental evaluation [22].

18.1 Empirical Evaluation of AFB and AFB-BJ

Fig. 18.1. Total non-concurrent computational steps by AFB, ADOPT and SBB
on low-density (p1=0.4) MaxDisCSPs

All experiments were performed on a simulator in which agents are simu-
lated by threads which communicate only through message passing. The dis-
tributed optimization problems used in all of the presented experiments are
random MaxDisCSPs. The network of constraints in each of the experiments
is generated randomly by selecting the probability p1 of a constraint among
any pair of variables and the probability p2, for the occurrence of a violation

18.1 Empirical Evaluation of AFB and AFB-BJ 205

(a nonzero cost) among two assignments of values to a constrained pair of
variables. Such uniform random constraints networks of n variables, d values
in each domain, a constraints density of p1, and tightness p2 are commonly
used in experimental evaluations of CSP algorithms (cf. [52]). MaxCSPs are
commonly used in experimental evaluations of constraint optimization prob-
lems (COPs) [36]. Other experimental evaluations of DisCOPs include graph
coloring problems [47, 66], which are a subclass of MaxDisCSP.

Fig. 18.2. Total number of messages sent by AFB, ADOPT and SBB on low-
density (p1=0.4) MaxDisCSP

In order to evaluate the performance of distributed algorithms, two in-
dependent measures of performance are used: run time, in the form of non-
concurrent steps of computation, and communication load, in the form of the
total number of messages sent [37]. We use the method described in Chap-
ter 10 and Chapter 11 for counting nonconcurrent computational steps.

The first set of experiments compares the performance of ADOPT , SBB
and AFB. Figure 18.1 presents the average run time in number of non-
concurrent computation steps, on randomly generated MaxDisCSPs with
n = 10 agents, domain size k = 10, and a relatively low constraint tight-
ness of p1 = 0.4. Figure 18.2 compares the same algorithms on the same
problem instances by the total number of messages sent. From these figures

206 18 Empirical Evaluation of DisCOP algorithms

it is clear that the ADOPT outperforms the basic algorithm (synchronous)
SBB, in accordance with the experimental evaluation reported in [47]. It is also
clear that AFB outperforms ADOPT , especially for the very tight (high-p2)
problems. This is true for both of the performance measures.

The second set of experiments includes the ADOPT algorithm and three
versions of the AFB algorithm: AFB, AFB-minC - a variation of AFB which
includes dynamic ordering of values based on minimal cost (with the cur-
rent CPA), and AFB-BJ which is the composite backjumping and forward-
bounding algorithm. AFB-BJ uses the same value ordering heuristic as AFB-
minC. This was selected in order to show that the improved performance of
AFB-BJ is a result of the backjumping feature and not of the value ordering
heuristic.

Figure 18.3 presents the average run time in number of nonconcurrent
computation steps, of all algorithms: ADOPT, AFB, AFB-minC and AFB-
BJ, on MaxDisCSPs with n = 10 agents, domain size k = 10, and a high
constraint density of p1 = 0.7. Asynchronous optimization (ADOPT) is much
slower than the standard version of AFB. Also clear from this figure, is that
the value ordering heuristic greatly improves AFB’s performance. The added
backjumping improves the performance much further. The RHS of the figure
provides a zoom in of the section of the graph between p2 = 0.9 and p2 = 0.98.
For such tight problems, ADOPT did not terminate in a reasonable amount
of time and was simply terminated (and thus is missing from the graph).

For tightness values that are higher than p2 > 0.9 AFB and its vari-
ants demonstrate a phase transition. This phase transition behavior of the
AFB algorithms is very similar to that of lookahead algorithms on centralized
MaxCSPs [33, 36] that was described in Section 3.4.

Figure 18.4 presents the total number of messages sent by each of the algo-
rithms for the same set of problem instances. The results of this measurement
closely match the results of run time, as measured by nonconcurrent steps.
We can also see the exponential rapid growth of messages of ADOPT , which
was described in Section 15.5.3.

18.1 Empirical Evaluation of AFB and AFB-BJ 207

(a) (b)

Fig. 18.3. (a) Number of noneconcurrent steps performed by ADOPT , AFB, AFB-
minC, and AFB-BJ for high-density MaxDisCSP (p1 = 0.7). (b) A closer look at
p2 > 0.9

(a) (b)

Fig. 18.4. (a) Number of messages sent by ADOPT , AFB, AFB-minC, and AFB-
BJ for high-density MaxDisCSPs (p1 = 0.7). (b) A closer look at p2 > 0.9

References

[1] M.S. Affane and H. Bennaceur. A weighted arc consistency technique for max-
csp. In Proc. 13th Europ. Conf. on Artific. Intell. (ECAI-98), pages 209–213,
1998.

[2] Andrew B. Baker. The hazards of fancy backtracking. In Proc. 12th Nat. Conf.
Artificial Intelligence (AAAI-94), pages 288–293, Seattle, WA, USA, July 1994.

[3] R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Distributed constraint
satisfaction in a wireless sensor tracking system. In Proc. Workshop on Dis-
tributed Constraint Reasoning, IJCAI01, 2001.

[4] R. Bejar, C. Domshlak, C. Fernandez, K. Gomes, B. Krishnamachari, B.Selman,
and M.Valls. Sensor networks and distributed csp: communication, computation
and complexity. Artificial Intelligence, 161:1-2:117–148, January 2005.

[5] C. Bessiere and J. Regin. Refining the basic constraint propagation algorithm.
In Proc. IJCAI-01, pages 309–315, 2001.

[6] C. Bessiere and J.C. Regin. Using bidirectionality to speed up arc-consistency
processing. Constraint Processing (LNCS 923), pages 157–169, 1995.

[7] C. Bessiere and J.C. Regin. Mac and combined heuristics: two reasons to forsake
fc (and cbj?) on hard problems. In Proc. CP 96, pages 61–75, Cambridge MA,
1996.

[8] C. Bessiere, A. Maestre, and P. Messeguer. Distributed dynamic backtracking.
In Proc. Workshop on Distributed Constraints (in IJCAI-01), 2001.

[9] C. Bessiere, A. Maestre, I. Brito, and P. Meseguer. Asynchronous backtracking
without adding links: a new member in the abt family. Artificial Intelligence,
161:1-2:7–24, January 2005.

[10] I. Brito and P. Meseguer. Distributed forward checking. In Proc. CP-2003,
pages 801–806, September, Ireland, 2003.

[11] I. Brito and P. Meseguer. Synchronous, asynchronous and hybrid algorithms for
discsp. In Workshop on Distributed Constraints Reasoning(DCR-04) CP-2004,
Toronto, September 2004.

[12] B.J. Clement and A.C. Barrett. Space applications for distributed constraint
reasoning. In Proc. 6th workshop on Distributed Constraints Reasoning (DCR-
05), Edinburgh, 2005.

[13] R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfac-
tion problems. Artificial Intelligence, 136:2:147–188, April 2002.

210 References

[14] R. Dechter and D. Frost. Backjump-based backtracking for constraint satisfac-
tion problems. Artificial Intelligence, 136:147–188, 2002.

[15] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction
problems. Artificial Intelligence, 34:1–38, 1988.

[16] Rina Dechter. Constraint Processing. Morgan Kaufman, 2003.
[17] J. P. Modi (ed.). Distributed constraints reasoning - 2004. In Proc. 5th Work-

shop on Distributed Constraints Reasoning (DCR-04), Toronto, 2004.
[18] M. Yokoo et. al. Distributed constraint satisfaction for formalizing distributed

problem solving. In IEEE Intern. Conf. Distrb. Comp. Sys., pages 614 – 621,
1992.

[19] C. Fernandez, R. Bejar, B. Krishnamachari, and K. Gomes. Communication
and computation in distributed csp algorithms. In Proc. CP2002, pages 664–
679, Ithaca, NY, USA, July 2002.

[20] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables
in constraint satisfaction problems. In Proc. IJCAI-85, pages 1076–1078, Los
Angeles, USA, 1985.

[21] Eugene C. Freuder. A sufficient condition for backtrack-bounded search. Jour-
nal of ACM, 32:755–761, 1985.

[22] A. Gershman, A. Meisels, and R. Zivan. Asynchronous forward-bounding for
distributed constraints optimization. In Proc. ECAI-06, pages 103–107, Lago
di Garda, August 2006.

[23] M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research,
1:25–46, 1993.

[24] Y. Hamadi. Distributed interleaved parallel and cooperative search in constraint
satisfaction networks. In Proc. IAT-01, Singappore, 2001.

[25] Y. Hamadi. Interleaved backtracking in distributed constraint networks. Intern.
Jou. AI Tools, 11:167–188, 2002.

[26] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[27] Katsutoshi Hirayama and Makoto Yokoo. Distributed partial constraint satis-
faction problem. In Proc. CP-97, pages 222–236, 1997.

[28] R. J. Bayardo Jr. and D. P. Miranker. On the space-time trade-off in solving
constraint satisfaction problems. In Proc. IJCAI-95, pages 558–562, 1995.

[29] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency
within dynamic backtracking. In Principles and Practice of Constraint Pro-
gramming (CP 2000), pages 249–261, Singapore, 2000.

[30] E. Kaplansky and A. Meisels. Scheduling agents - distributed employee
timetabling. Ann. of Operations Research, 2007.

[31] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 21:365–387, 1997.

[32] L. Lamport. Time, clocks, and the ordering of events in distributed system.
Communication of the ACM, 2:95–114, April 1978.

[33] J. Larrosa and P. Meseguer. Phase transition in max-csp. In Proc. 12th Euro-
pean Conference on Artificial Intelligence (ECAI-96), pages 190–194, Budapest,
Hungary, 1996.

[34] J. Larrosa and P. Meseguer. Partition-based lower bound for max-csp. In
Proc. Constraints Processing 1999 (CP-99), pages 303–315, Alexandria, Vir-
ginia, 1999.

References 211

[35] J. Larrosa and T. Schiex. The quest of the best form of local consistency for
weighted csp. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 239–244, Acapulco, Mexico, P2003.

[36] J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency.
Artificial Intelligence, 159:1–26, 2004.

[37] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
[38] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham.

Taking dcop to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Proc. 3rd Intern. Joint Conf. on Autonomous Agents &
Multi-Agent Systems (AAMAS-04), pages 310–317, NY, New York, 2004.

[39] R. Mailler and V. R. Lesser. Asynchronous partial overlay: A new algorithm
for solving distributed constraint satisfaction problems. J. Artif. Intell. Res.
(JAIR), 25:529–576, 2006.

[40] R. Mailler and V.R. Lesser. Solving distributed constraint optimization prob-
lems using cooperative mediation. In AAMAS-04, pages 438–445, 2004.

[41] A. Meisels and E. Kaplansky. Iterative restart techniques for solving timetabling
problems. Europ. Jou. OR, 153:41–50, 2003.

[42] A. Meisels and O. Lavee. Using additional information in discsp search. In Proc.
5th workshop on distributed constraints reasoning, DCR-04, Toronto, 2004.

[43] A. Meisels and A. Schaerf. Modelling and solving employee timetabling prob-
lems. Annal. Math. and AI, 39:41–59, 2003.

[44] A. Meisels and R. Zivan. Asynchronous forward-checking for distributed csps.
Constraints, 16:132–156, 2006.

[45] A. Meisels, I. Razgon, E. Kaplansky, and R. Zivan. Comparing performance of
distributed constraints processing algorithms. In Proc. AAMAS-2002 Workshop
on Distributed Constraint Reasoning DCR, pages 86–93, Bologna, July 2002.

[46] J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete
method for distributed constraints optimization. In Proc. Suton. Agents and
Multi-agent Sys., 2003.

[47] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous dis-
tributed constraints optimization with quality guarantees. Artificial Intelli-
gence, 161:1-2:149–180, January 2005.

[48] T. Nguyen, D. Sam-Hroud, and B. Faltings. Dynamic distributed backjumping.
In Proc. 5th workshop on distributed constraints reasoning DCR-04, pages 46–
61, Toronto, September 2004.

[49] A. Petcu and B. Faltings. A scalable method for multiagent constraint opti-
mization. In Proc. IJCAI-05, pages 266–271, Edinburgh, Scotland, UK, 2005.

[50] A. Petcu and B. Faltings. Mb-dpop: A new memory-bounded algorithm for
distributed optimization. In Proc. 20th Intern. Joint Conf. on Artif. Intell.
(IJCAI-07), pages 1452–1457, Hyderabad, India, 2007.

[51] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Compu-
tational Intelligence, 9:268–299, 1993.

[52] P. Prosser. An empirical study of phase transitions in binary constraint satis-
faction problems. Artificial Intelligence, 81:81–109, 1996.

[53] M.C. Silaghi. Asynchronously Solving Problems with Privacy Requirements.
PhD thesis, Swiss Federal Institute of Technology (EPFL), 2002.

[54] M.C. Silaghi and B. Faltings. Asynchronous aggregation and consistency in dis-
tributed constraint satisfaction. Artificial Intelligence, 161:1-2:25–54, January
2005.

212 References

[55] M.C. Silaghi and B. Faltings. Parallel proposals in asynchronous search.
Technical Report 01/#371, EPFL, August 2001. http://liawww.epfl.ch/cgi-
bin/Pubs/recherche.

[56] B.M. Smith and M. Dyer. Locating the phase transition in binary constraint
satisfaction problems. Artificial Intelligence, 81:155 – 181, 1996.

[57] G. Solotorevsky, E. Gudes, and A. Meisels. Modeling and solving distributed
constraint satisfaction problems (dcsps). In Constraint Processing-96, (short
paper), pages 561–2, Cambridge, Massachusetts, USA, October 1996.

[58] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[59] R.J. Wallace and E. Freuder. Constraint-based multi-agent meeting scheduling:

effects of agent heterogeneity on performance and privacy loss. In Proc. 3rd
workshop on distributed constraint reasoning, DCR-02, pages 176–182, Bologna,
2002.

[60] R.J. Wallace and E. Freuder. Constraint-based reasoning and privacy/efficiency
tradeoffs in multi-agent problem solving. Artificial Intelligence, 161:1-2:209–
228, January 2005.

[61] M. Yokoo. Algorithms for distributed constraint satisfaction problems: A re-
view. Autonomous Agents & Multi-Agent Sys., 3:198–212, 2000.

[62] M. Yokoo. Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. In Proc. 1st Intrnat. Conf. on Const. Progr.,
pages 88 – 102, Cassis, France, 1995.

[63] M. Yokoo and K. Hirayama. Distributed Constraint Satisfaction Problems.
Springer Verlag, 2000.

[64] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint
satisfaction problem: Formalization and algorithms. IEEE Trans. on Data and
Kn. Eng., 10:673–685, 1998.

[65] M. Yokoo, K. Hirayama, and K. Sycara. The phase transition in distributed
constraint satisfaction problems: First results. In Proc. CP-2000, pages 515–
519, Singapore, 2000.

[66] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed stochastic
search and distributed breakout: properties, comparishon and applications to
constraints optimization problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.

[67] R. Zivan and A. Meisels. Parallel backtrack search on discsps. In Proc. AAMAS-
2002 Workshop on Distributed Constraint Reasoning DCR, Bologna, July 2002.

[68] R. Zivan and A. Meisels. Synchronous vs. asynchronous search on discsps.
In Proc. 1st European Workshop on Multi Agent System, EUMAS, Oxford,
December 2003.

[69] R. Zivan and A. Meisels. Concurrent backtrack search for discsps. In Proc.
FLAIRS-04, pages 776–81, Miami Florida, May 2004.

[70] R. Zivan and A. Meisels. Concurrent dynamic backtracking for distributed csps.
In CP-2004, pages 782–7, Toronto, 2004.

[71] R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on
discsps. In CP-2005, pages 32–46, Sigtes (Barcelona), Spain, 2005.

[72] R. Zivan and A. Meisels. Message delay and discsp search algorithms. Annals
of Mathematics and Artificial Intelligence (AMAI), 46:415–439, 2006.

[73] R. Zivan and A. Meisels. Message delay and asynchronous discsp search.
Archives of Control, 16:221–242, 2006.

References 213

[74] R. Zivan and A. Meisels. Dynamic ordering for asynchronous backtracking on
discsps. Constraints, 11:179–197, 2006.

[75] R. Zivan and A. Meisels. Concurrent search for distributed csps. Artificial
Intelligence, 170:440–461, 2006.

[76] R. Zivan and A. Meisels. Conflict directed backjumping for maxcsps. In Work-
shop on Heuristic Search, Memory-based Heuristics and Their Applications ,
AAAI-2006, Boston, 2006.

[77] R. Zivan, M. Zazon, and A. Meisels. Min-domain ordering for asynchronous
backtracking. In Proc. Constraints Processing 2007 (CP-07), Providence, RI,
September, 2007.

Index

ABT, 31, 41
ABT - a 4-queens example, 41
ABT - improving performance, 49
ABT - ordering heuristics, 101
ABT - performance improvements, 51
ABT - polynomial Nogoods store, 51
ABT algorithm in detail, 40
ABT examples, 42
ABT-DO Dynamically ordered ABT,

92, 93
AC - Arc consistency, 10, 12
AC for COPs, 23
AC* for COPs, 24
AFB - backjumping, 193
AFB - correctness, 189
AFB - the algorithm, 186
AFB-BJ - the algorithm, 198
AFC - algorithm description, 55
AFC - comparative performance, 122
AFC - Correctness, 59
AgentView - in ABT, 38, 43
AgentView - in AFC, 57
Asynchronous Backtracking - ABT, 37
Asynchronous Forward-Checking, 54
Asynchronous heuristics explained, 132
Asynchronous ordering - performance,

128
Asynchronous ordering heuristics, 91,

101
Asynchronous Weak Commitment -

AWC, 89

Backjumping, 11
Backjumping in DisCOPs, 194

Branch & Bound Algorithm, 22

ConcBT - Concurrent backtracking, 63
ConcBT - dynamic splitting of search

space, 72
ConcBT - the algorithm, 69
ConcDB - backjumping, 75
ConcDB - comparative performance,

123
ConcDB - Concurrent Dynamic

Backtracking , 65
ConcDB - the algorithm, 75
Concurrency, 29
Concurrent search, 64
Concurrent search - backjumping, 75
Concurrent Search - correctness, 79
Concurrent search - detailed algorithm,

72
Concurrent search - performance, 124
Concurrent search algorithms, 154
Constraint Satisfaction Problems -

definition, 8
Constraints Checks CCs, 13
COP - Constraints Optimization

Problems, 19
CPA - Current Partial Assignment, 57
CSP - Constraints Satisfaction

Problems, 7
CSP - definition, 8
CSP - performance measures, 13
CSP search, 28

Directed Arc-consistency, 12

216 Index

DisCOP - Distributed Constraints
Optimization, 159

DisCSP - Distributed CSPs , 27
Distributed BnB, 161
Distributed Branch & Bound, 162
Distributed CBJ, 145
Distributed COP, 2
Distributed CSPs, 1
Distributed search, 3, 31

Experimental evaluation of algorithms,
122, 125, 131, 140, 203, 206

Families of DisCSP algorithms, 144
Forward -checking, 53
Forward-checking, 11, 31
Forward-checking (asynchronous), 55
four-queens example, 3

LookAhead search, 11, 23, 24

MaxCSP, 2, 20
MaxDisCSPs - experimental evaluation

of DisCOPs, 204
Measuring concurrent performance,

105, 110
Meetings Scheduling Problem (MSP),

29
Message delays - correctness, 142
Message delays - empirical evaluation

of, 148
Message delays - impact, 137
Message delays - impact on DisCSP

algorithms, 145

Message delays - simulation, 139
Message delays and ordering, 156
Min-domain asynchronous, 132
Min-domain ordering, 84, 85
Min-domain synchronous, 87, 130

NCCCs - the mechanism, 114
Nogoods sending, 51
Nogoods store - exponential, 38
Nonconcurrent constraints checks, 111,

115

Order messages in ABT, 93
Ordering heuristics, 32, 85
Ordering heuristics - asynchronous, 90
Ordering heuristics - Distributed, 83
Ordering heuristics - synchronous, 86

performance measures, 106, 112, 122
Phase transition in COPs, 25
Phase transition in CSPs, 14
Phase transition in DisCSPs, 121

random CSPs, 14
Retroactive ordering heuristics, 133

Search algorithms, 7
Synchronous ordering heuristics -

experiments, 125

Time-stamping in distributed search,
61, 188

	Introduction
	Constraints Satisfaction Problems - CSPs
	Defining CSPs
	CSP Algorithms and Techniques
	Behavior of CSP solving algorithms

	Constraints Optimization Problems - COPs
	Branch and Bound (BnB)
	Branch and Bound + Arc-Consistency (BnB-AC)
	Branch and Bound + AC* (BnB-AC*)
	Phase Transition in MaxCSPs

	Distributed Search
	Distributed search algorithms on DisCSPs
	Introducing Asynchronous Backtracking

	Asynchronous Backtracking (ABT)
	A Complete 4-Queens Example
	The ABT Algorithm - Polynomial Storage
	Correctness of ABT
	Improving Performance of ABT

	Asynchronous Forward-Checking
	AFC - Algorithm Description
	Correctness of AFC
	Improved Backtrack Method for AFC

	Concurrent Dynamic Backtracking
	4-Queens with Concurrent Search
	The ConcBT Algorithm
	A splitting of search space example

	Concurrent Dynamic Backtracking
	Correctness of Concurrent Search

	Distributed Ordering Heuristics
	Ordering heuristics for Synchronous Backjumping
	Heuristics with no additional messages
	Heuristics with additional network overhead

	Ordering heuristics for AFC

	Asynchronous Ordering Heuristics
	Specific Asynchronous Heuristics
	Dynamically ordered ABT
	Correctness of ABT_DO
	A new class of asynchronous heuristics
	Correctness of Retroactive ABT_DO

	Performance measures for distributed search
	A Simple Example with Naive Methods
	Dividing concurrent search into rounds
	A More Complex Example for Computing NCCCs
	A Model for Nonconcurrent Constraints Checks
	The Cumulative Cost Algorithm (CCA)
	Realization of the Model by the CCA Algorithm

	Experimental Evaluation of DisCSP Algorithms
	Comparing Different Algorithms
	Asynchronous forward-checking vs. ABT
	Experimental evaluation of ConcDB

	Empirical Evaluation of Heuristic Ordering
	Evaluation of synchronous ordering heuristics
	Evaluation of dynamically ordered ABT
	Retroactive ordering for ABT

	The Impact of Communication - Message Delays
	Simulating Delayed Messages on DisCSPs
	Adjusting the measuring method for dynamic ordering

	Validity of AMDS

	Message Delays and DisCSP Search Algorithms
	The Impact of Message Delays
	A summary of the Impact of Message Delays
	Message Delays and Dynamic Ordering

	Distributed Constraint Optimization Problems (DisCOPs)
	Pseudo-trees
	Synchronous Branch and Bound (SBB)
	Distributed Pseudo-tree Optimization (DPOP)
	Optimal Asynchronous Partial Overlay (OptAPO)

	Asynchronous Optimization for DisCOPs
	Lower and Upper Bounds in ADOPT
	Computing lower and upper bounds

	Assigning Values
	The Threshold Mechanism
	ADOPT - Summary and Termination
	Special (and Surprising) Features of ADOPT
	Updating context from lower priority agents
	Pseudo-trees and concurrency of computation
	Network load of ADOPT

	Asynchronous Forward-Bounding
	AFB - Overview
	Lower Bound Estimation for the Cost Increment
	AFB - Algorithm Description
	The Time-Stamp Mechanism
	AFB - Proof of Correctness
	Concurrency in AFB

	Extending AFB - BackJumping
	Adding Value Ordering Heuristics
	Backjumping - Key Concepts
	A Backjumping Example
	The AFB-BJ Algorithm
	AFB-BJ - Proof of Correctness

	Empirical Evaluation of DisCOP algorithms
	Empirical Evaluation of AFB and AFB-BJ

	References
	Index

